

COSBench

A Benchmark Tool for Cloud Object Storage Services

Qing Zheng, Chen Haopeng Yaguang Wang, Jiangang Duan, Zhiteng Huang Shanghai Jiao Tong University, Intel Asia-Pacific R&D Ltd.

Object Storage

Structured data

profiles/states/transactions/orders

Unstructured data

photos/documents/movies/backups/logs/archives

Object Storage Model

Object

- object = data + metadata
- **RESTful** interface
- head/get/put/post/delete

Implementations

What's next?

To further drive optimization and innovation

- Understand and compare different cloud object storage services
- locate bottlenecks and improve architectures/algorithms/configurations
- find future research opportunities for both HW solutions and SW solutions

None of this can be achieved without a dedicated benchmark tool for cloud object storage.

COSBench

Major requirements

- scalable
 - support single client load testing, and distributed load testing
- flexible
 - workload model with multiple configuration options
- simple
 - easy to use, real-time performance showing, automatic report generation

Workload Model

Workload

• comprises a number of workers performing a certain set of operations

Access pattern

operation-percentage/object-range/object-size

Concurrency pattern

worker-number/container-number

Workload Configuration

Basic Mode

```
<?xml version="1.0" encoding="UTF-8" ?>
<workload name="Core"
         description="swift performance test"
         target="Mock"
         credentials="conf/cloudfiles.properties"
         workerCount="4"
         containerCount="8"
         operationCount="0"
         initObjectCount="20"
         runtime="20"
         objectSize="64k"
         bufferSize="128k"
         isPrepared="true"
         readPercentage="100"
         writePercentage="0"
         showStatus="true"
         sampleInterval="5000"
         statusInterval="5000"
         opLogging="false"
         verbose="false"
```

</workload>

Workload Configuration

Advanced Mode

```
<?xml version="1.0" encoding="UTF-8" ?>
<workload name="Core" description="swift test" target="Swift"
credentials="conf/cloudfiles.properties" workerCount="2" containerCount="20"
operationCount="0" initObjectCount="10000" runtime="60" isPrepared="true">
```

```
<spec name="64k;50%Read">
    <operation name="READ" percentage="50" objectSize="64k" />
    <operation name="WRITE" percentage="50" objectSize="64k" />
</spec>
```

```
<spec name="64k;100%Read">
        <operation name="READ" percentage="100" objectSize="64k" />
        </spec>
```

```
<worker name="1" spec="64k;50%Read" containers="1-20" objects="1-5000" />
<worker name="2" spec="64k;100%Read" containers="1-20" objects="5001-10000" />
```

</workload>

Architecture

Controller

control all drivers and collect stats

Driver

- driver can run tests w/o controller
- one daemon thread which keeps listening for instructions from controller, and passing log back
- multiple agents which generate load according to workload configuration, the work for each agent can be different

Controller interacts with daemon through

- sending command to control agents
- receiving real-time logs

Metrics

Throughput:

number f operations completed in one second (op/s)

Response time

• duration between operation initiation and completion (ms)

Bandwidth

amount of data transferred in one second (KiB/s)

Success Ratio

• ratio of successful transmission (%)

Experiments

Hardware	Configuration
Townsend_16	3 chassis, 6 servers
Proxy+Auth Node	
	2x WSM-EX 2.26GHz (HT ON)
	64GB RAM
	1x 250GB SATA disk
Storage Node	
	2x NHM-EP 2.93GHz (HT ON)
	12GB RAM
	12x Seagate 73GB SAS as
	Storage through one LSI
	3801 card.
	1x 10GbE between proxy and
	storage node, 1x 1GbE per
Networking	storage node
	10GbE between proxy and
	Client
Client Node	
	Same as Storage Node
	except 2x 1GbE bonding
	used.
Switch	shared with others
Software	
05	RHEL 6.1 (kernel 2.6.39)
Swift	Diablo (swift 1.4.3)

intel

Read Performance

Future work

Workload model UI improvements More experiments

