
1896 1920 1987 2006

STWM: A Solution to Self-adaptive Task-
worker Matching in Software

Crowdsourcing

--By Ying Fu

Outline

Introduction
Design of the solution

• Framework
• Meta-model for description
• Match algorithm for individual worker
• Team formation algorithm

Simulation experiments
Conclusion and future work

Introduction

What is crowdsourcing ?
• Outsourcing a task via open call

Crowdsourcing websites
• MTurk/ TopCoder/ Upwork/ CrowdFlower
• 80,000 jobs, 5+ million workers

Task-worker matching plays a crucial role
How to describe task requirements and worker skills
What criteria should be given in the description

Introduction

Description with natural language (Taskcn)
• Not machine-readable
• Inefficient
• subjective

Tags (upwork)
• Not sufficient to articulate task publishers’ needs

• task A(Java && Javascript)
• task B(Java || Javascript)

• Requirements are not exhaustive
• Matching rules vary on skills
• No single suitable worker for the task

A Solution – STWM

Meta-model for description
• Extensible/ Customized

Self-adaptive task-worker matching algorithm
• Efficient
• Match tasks and workers according to the customized

rules

Team formation
• Workers to form a team

Framework of STWM

Fig.1. Structure of the task-worker matching solution

Meta model for description

constraint, a function defined in RDF
match: =, within, >, <, ≠ … API provided
composite: Max, Min, ∪, ∩… API provided

Meta model for description

Definitions of the metadata class for properties of time, pay and language skill

Meta model for description

A definition of class language and two instances this class

Meta model for description

Class definition for task and worker:

score: a criterion used to sort matched workers

skill_weight: the weight of the skill_rerquirment among the
Listed four property requirments in the task class

Matching algorithm for individual worker

Set<worker> FinalSet: workers in this set meet all the
requirements of the task T.
Set<worker> PreferCandidate: workers in this set meet all
the necessary requirements of the task T.
Set<worker> Candidate: workers in this set meet part of the
requirements of the task T.
Set<Property> M: the set of all properties required by task T.
Set<Property> M’: the set of all necessary properties
required by task T.

Matching algorithm for individual worker

necessary property:
• if p.domain ≠ skill and p.weight ≥ baseline_weight
• if p.domain = skill and p.weight ≥ avg_weight(skills)

calculation formula of worker.score
• w is an instance of Class worker, p’ is the property of the

worker w with the same property name as p

Matching algorithm for individual worker

Team formation algorithm

1) T: a task published by a client
2) W: a set of workers

• n Number of workers

3) I: a set of required properties of the task T
• m Number of required properties

4) Wj : jth worker in W
5) Ii: ith property of the task T
6) Q: team assigned to the task T
7) q: property profile of the team Q

Team formation algorithm

Worker W
• aij = 1 the jth worker Wj has the ith property of I (Ii)
• aij = 0 otherwise

Team Q
• qi = 1 the ith property of I (Ii) is covered by the team Q

Team formation algorithm

the team formation problem can be formally formulated as a
binary integer program as follows, where cj represents the
cost of choosing the worker wj.

Meta-RaPS-SCP-Construction
• a feasible solution for a SCP instance
• randomness

Team formation algorithm

Simulation experiments

Exp1: experiment for task-worker matching with
comparison

• Same skill requirements, different preference

Simulation experiments

Exp1: experiment for task-worker matching with
comparison

Definition for property database

Simulation experiments

Exp1: experiment for task-worker matching with
comparison

Simulation experiments

Exp2: experiment for team formation
• set preferCount = 2, maxLoops = 100, %priority = 80% and

%restriction = 60% .

Simulation experiments

Exp2: experiment for team formation

Exp3: no suitable team found for task T
• langOfC.value = {Java, JavaScript,Ruby, Html5}
• constraint: Java && JavaScript && Ruby && Html5
• payOfC.value = 50
• the task should be re-described

Conclusion and future work

An extensible meta-model for the descrip-tion of task
requirements and worker skills
A self-adaptive matching algorithm
Dynamically team formation

Conduct some experiments in a real crowdsourcing
workplace to evaluate the practicability of our solution.
Improve our meta model to support more complex constraints
on task requirements such as the dependency between tasks.

