*An Introduction
to ZHENG Qing

by ZHENG Qing

Agenda

* My Profile

* My Study Life

* My Religious Belief

» History of Christianity

* Functional Programming

*Profile

TEAE ORI + K

. =

= =

B [EH OO

=< =
= = =
HHEH =B
EH#H H O
mE K =
m< = -
BE <= <K
= . B =
IR =K . I
MR B
K=E= H
RO +R O
DN =
R .mE=Em
M o<y

REREBREER
H H K iln B2 = 5

< ESEERT
BRE O . .
B <K IDR S
KT EE
HE=Jhh{c

—Nm™m <Y InOo

88

*Shanghai

3810

eage EMAE

G
\
5
Q
\'9
B
7.y
i
121 g&
CRERE
NI eR ,
S
ey
sis-—/ ﬁ:
A
L pES Pavasi:] MR
’ 7Bt
W W2 HEH
? —_— =itER s221
ji Bl
X $12i
MW S - i HoLH
I]
= %
; HH# By 222 X e
EE . g
By KER =

KR I

* Age of Empire

http://ageofempiresonline.com/

Greek

14

Pers

Celt

*Movies, TV-Series
USA

*Documentary
BBC

*Interests

ARION LAYRENCE JUBE GWYNETH

CO'III.LARD DAMGN FISHBURNE I.AW PALTROW WINSLEF

i ¢
.ﬁggn 3

W e

1)
QU
>
]
m
=
1)
18
L
=
q
L
i
T
Z

*Starts

*Starts

*College Professor
*Corporation Scientist

*Career Goals

*Study Life

*2006 ~ 2010
School of Software, SJTU

Junior: Fundamentals of Software Development
Junior: Enterprise System Architecture
Senior: Software System Architecture

*Undergraduate

*Workflow Verification
WYS

*Cloud Resource Management
CX, WWT, LGD

*Research History

*Cloud Storage
Management of Data
Distributed Computing
Cloud Computing

ZC (Sister Volcano)

*Research Direction

“Religious Belief

*Christianity
* Catholic

*Orthodox
* Protestant

*God

*Determined
*God has plan for the world and every one of us
*We have already made all the decisions

*Example

*We would still make the same decision as we have made if
time could go back and we had to do that chose again

*No matter how hard the chose is or how much time we spent
on evaluation, we are bound to make the pre-determined
decision

*View of the World

*Free
*We are free to make our own chose as we see fit

*We should be responsible for every decision we
make and therefore our future

*Example
*No one can help or force us to make any decision

*What we decide right now will certainly make
our future different

*View of the World

*Summary

*The Path of Life is determined in the view of God;
Every thing happens for a reason

*Life is unpredictable and full of surprise as we
see it, so make every decision carefully and
wisely

*Do not regret for the decisions we have already
made; There is always hope!

*View of the World

*Meaning of Life

*To see the plan of God and to appreciate every thing that
God has created for us

*To understand why we have made all the decisions that
have in turn made every one of us unique

*To become a better soul

*View of the World

History of
Christianity

”‘r‘“‘,“vtﬂu‘n!
QY™

N

N8

VDS

S S AR N
\.';..E\l.‘l Bt

e

f Rome

Imperial Ch
ﬁﬂs&ﬁiﬁ '-A-lexa.ndna
; o FE

>

of Rome

Imperial Chur
Alexandria
AT

Ba) /R e) T

R T

qTEE

o
CIAS e 2

Ja

Church of Alexandria
- Alexandria
g FLLE

>4

B

o

Imperial Church ¢ VZantiu

Alexandria
FLTE

Ba) /R e) T

e sﬁ“\; it
naeouncabof hal*gedon
‘Natu f the‘“Chrlst

Ivmperial Church of Byzantium ~

kBT Alexandria
AT

s’i?u’?a

S S AR N
\.';..E\l.‘l Bt

g
Eb

1
95
L.A A

g
Eb

1
95
L.A A

g i N \B,,,Eastern OrthédGXC%rch
eFaTts Proteﬁant Chucch ~ Russia Empire

= J

Ba) /R e) T

*Functional

*Some may assume

*Fp language is just a tool which somehow rocks on
list!

*Declaration:

[1,2,3,4]; 1:[2,3,4]

* Functions and Operations:

[1,2] ++ [3,4]; [1,2,3]!!2; head [1,2]; take 2 [1,2,3]

*What’s Functional
Language?

*Some may assume

*Fp language is just a tool which somehow rocks on
list!

*Texas Ranges:

[1..4]; [1,3..7]; [1,2..]

*List Comprehension:

[x*¥2 | x <- [1..6], x*2 >= 12]
[(x, y) | x <- [1..3], y<- [x..4] , x*y > 6]

*What’s Functional
Language?

* Imperative Programming
* Philosophy: Program = Algorithms + Data Structure (Object-Oriented?)
* Tuning Machine
* C++,Java, C#, ...
* Functional Programming
* Philosophy: Program = Evaluation of Expressions
* Lambda Expression
* Scala, Haskell, F#, ...
* Logic Programming
* Philosophy: Program = Facts + Reasoning
* Horn Expression
* Prolog

*Programming
Paradigm

*Quick Sort

4 3 1 7 5 2 6

\ \
| |

*So What?

*C Implementation:

void qgsort(int a[], int lo, int hi) {
int i,j;
gsort(a, lo, ?);
gsort(a, ?, hi);

}

*Imperative
Implementation

void gsort(int a[], int lo, int hi) {
int h, 1, p, t;
if (lo < hi) {
1l =10; h=hi; p=al[hi];
do {

while ((1 < h) & & (a[l] <= p)) 1 = 1+1;
while ((h > 1) & (a[h] >= p)) h = h-1;
if (1 < h) {

t = a[l]; a[l] = a[h]; a[h] = t;
}

} while (1 < h);

a[hi] = a[l]; a[l] = p;
gsort(a, lo, 1-1);
gsort(a, 1+1, hi);

*Imperative
Implementation

*Haskell Implementation:

quicksort [] = []
quicksort (p:xs) =
(quicksort lesser) ++ [p] ++ (quicksort greater)
where lesser = filter (< p) xs
greater = filter (>= p) xs

*Functional
Implementation

*Imperative Language
“HOW

*Functional Language
*WHAT

*Cool Huh?

*Zero Side-Effects (multi-core-friendly)
*Polynomial and Overloading

*Type Inference

*High-Order Function

(X» *Features

% °
ImmUtable Var]ables void foo(vector<int> &array) {

* Mutable variables: } array.push_back(1);

*No global variables
5% . bool is running;
Global variables:

void start() {
is_running = true;

*1dempotent Functions!

*Zero Side-Effects

*Type System
*class: Eq, Ord, Enum, Num, Show, ...
* Interface, [Virtual Class or Operator in C++]

*type: Boolean, Char, Int, String, ...

* Data representation, Interface implementation,
[Class in C++]

* type variable:
* An unknown type

*Polynomial and
Overloading

*Overloading Function

fst :: (t1 ,t2) -> t1
fst (a,) = a

*Polynomial Function

plus :: Num a => a -> a -> a
plus a b=a+b

*Polynomial and
Overloading

*Inference
*deduce type from expressions

*Methodology
*type variable
*type unification: aA = bA

*a:: ([Int], Boolean), b :: ([Float], t1), A = { Int ->
Float, t1 -> Boolean }

*ah = ([Float], Boolean), bA = ([Float], Boolean)

*Type Inference

*Example

hello x = [x..y] where y = 2 * x

*what will be the type of function hello?
* clues: [x..y], 2*x

hello :: (Num a, Enum a) => a -> [a]

*Type Inference

Python Weak Type

Java Strong Type Type Save
C++ Strong Type Type Unsave
Haskell Type Inference Type Save

*More about Type

*High-Order Function

*a function of function

*map

map :: (a -> b) -> [a] -> [b]

*example

map (+3) [4,3,1,7,5,2,6]

*High-Order Function

*High-Order Function
*a function of function

“foldl

foldl :: (a -> b -> a) ->a -> [b] -> a

*example

puls ab=a+b
foldl plus o0 [4,3,1,7,5,2,6]

*High-Order Function

*Map-Fold

ai ai+1 | ai+2 ai+3 ai+4 ai+h

Key ki,b1 | kj,b2 | ki,b3 | kj,b4 | kj,b5 kj,bé
//7| //7| //7| //7| //7| //7| //7|
P R R g AP
cO c1 c2 c3 c4 c5 cb c/7

*Map-Fold

57

*Thank You

