
Architecture of Enterprise Applications II
Arch. & Architect

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)

Shanghai Jiao Tong University

Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems

Agenda

• Introduction to architecture of enterprise apps
– Definition and content of architecture

– Qualification of architects

– Features of Arch. Of Enterprise Apps.

2

REliable, INtelligent & Scalable Systems

SWEBOK

• Guide to the Software Engineering Body of Knowledge

– A project of the IEEE Computer Society Professional Practices Committee

REliable, INtelligent & Scalable Systems

SWEBOK

• Guide to the Software Engineering Body of Knowledge

– A project of the IEEE Computer Society Professional Practices Committee

REliable, INtelligent & Scalable Systems

RUBiS

• RUBiS http://rubis.ow2.org/

• How is RUBiS built?

REliable, INtelligent & Scalable Systems

What is Software Architecture ?

• "Architecture" is a term that lots of people try to define, with little
agreement.

• There are two common elements:
– One is the highest-level breakdown of a system into its parts;

– the other, decisions that are hard to change.

• It's also increasingly realized that there isn't just one way to state a system's
architecture; rather, there are multiple architectures in a system, and the
view of what is architecturally significant is one that can change over a
system's lifetime.

REliable, INtelligent & Scalable Systems

Why Software Architecture?

• Increasing Size and Complexity of Software Systems.

• Designing and Specifying the overall system structure.

• Gross organization and global control of systems structure.

• Scaling and Performance.

• Selection among design alternatives.

REliable, INtelligent & Scalable Systems

Software Architecture in SWEBOK

• In its strict sense, a software architecture is “a description of the
subsystems and components of a software system and the
relationships between them”.

• Architecture thus attempts to define the internal structure—
according to the Oxford English Dictionary, “the way in which
something is constructed or organized”—of the resulting
software.

REliable, INtelligent & Scalable Systems

 Typical System Architecture

What is Software Architecture

Enterprise/Product Architecture

Business Architecture

Application Architecture

Technical Architecture

Product Architecture

REliable, INtelligent & Scalable Systems

What is Software Architecture

• Software Architecture transforms Business Architecture into
an set of designs and guidelines to realize business process
in an information systems

• Software Architecture relies on Technical Architecture to
provide an efficient/scalable/secure environment

REliable, INtelligent & Scalable Systems

Software Architecture-SWEBOK

• Architectural Structures and Views
– Different high-level facets of a software design can and should be

described and documented. These facets are often called views: “A view
represents a partial aspect of a software architecture that shows specific
properties of a software system”
• logical view (satisfying the functional requirements)
• process view (concurrency issues)
• physical view (distribution issues)
• Development view (how the design is broken down into implementation

units).

– a software design is a multi-faceted artifact produced by the design

process and generally composed of relatively independent and
orthogonal views.

REliable, INtelligent & Scalable Systems

Software Architecture-SWEBOK

• Architectural Styles
– An architectural style is “a set of constraints on an architecture that

defines a set or family of architectures that satisfies them”

– An architectural style can thus be seen as a meta-model which can
provide software’s highlevel organization (its macroarchitecture).
• General structure (for example, layers, pipes and filters, blackboard)

• Distributed systems (for example, client-server, threetiers, broker)

• Interactive systems (for example, Model-View-Controller, Presentation-Abstraction-
Control)

• Adaptable systems (for example, micro-kernel, reflection)

• Others (for example, batch, interpreters, process control,

• rule-based).

REliable, INtelligent & Scalable Systems

Software Architecture-SWEBOK

• Software Architecture for Product Families

– One possible approach to allow the reuse of software designs and
components is to design families of software, also known as software
product lines. This can be done by identifying the commonalities among
members of such families and by using reusable and customizable
components to account for the variability among family members.

– In OO programming, a key related notion is that of the framework: a
partially complete software subsystem that can be extended by
appropriately instantiating specific plug-ins (also known as hot spots).

REliable, INtelligent & Scalable Systems

Components of Software Architecture

• Business model

• Platform

• Layer/Network Model

• Domain Framework

• Technical Framework

• Deployment Model

REliable, INtelligent & Scalable Systems

What HW/SW components are involved

• Database

• Application Server/Middleware

• Network

• Client Devices

• Servers

• Other products

REliable, INtelligent & Scalable Systems

Components of Technical Architecture

• Hardware requirements (Server) for Database

• Hardware requirements (Server) for Application Server,
Middleware

• Hardware requirements for Client Devices

• Network design for Data center where Servers are hosted and
connection among client devices, offices to data center

• Security HW/SW design in the whole systems

REliable, INtelligent & Scalable Systems

Components of Application Architecture

• Domain Models

• Programming model

• Platform Architecture

• Implementation Architecture

• Components

• Development Environment

• Development guidelines

REliable, INtelligent & Scalable Systems

Software Architecture Quality Metrics

• Availability

• Reliability

• Modifiability

• Performance

• Security

• Testability

• Usability

• Supportability

REliable, INtelligent & Scalable Systems

Software Architecture Quality Metrics

• Business objectives(T2M,Targeted Market)

• Skill of development team and local market of team

• Cost to build and Maintain v.s. Benefit

• Materiality of Technology

• Current System constrain, integration

• Migration, migration, migration

REliable, INtelligent & Scalable Systems

Summary

• Software Architecture need to consider from both technical point of view as well as
business point of view

• There are different ways to communicate architecture design

• There is no THE best architecture for any one software system

• Always need consider

– external constrain, such cost, infrastructure,…

– Maturity of IT organization, not only development, but also operations

• Architecture is a live entity, therefore, ability to grow, migrate is very important

REliable, INtelligent & Scalable Systems

What is Software Architect

• Circa 25 BCE, Vitruvius described the role of an
architect as:

– The ideal architect should be a man of letters,

 a mathematician, familiar with historical studies,

 a diligent of philosophy, acquainted with music,

 not ignorant of medicine, learned in the responses of
Jurisconsultis, familiar with astronomy and astronomical
calculations

REliable, INtelligent & Scalable Systems

Risk and Rewards of Architect

REliable, INtelligent & Scalable Systems

What Architect Do

• Gather System Requirements

• Translate requirement to architecture design

• Implement proof of concept, define development
environment

• Develop Architecture Module

• Communicate Architecture Design

• Be the technical expert

• Mentor/help Developers

REliable, INtelligent & Scalable Systems

Architect need to be ---

REliable, INtelligent & Scalable Systems

Technical Skills

• Requirement gathering/Management

• Modeling and analysis methodology

• Full Software Development Life Cycle

• Modern architectural technologies, such as J2EE
and .NET

• In depth knowledge of programming languages

• Network, Security, hardware platforms

• Database

REliable, INtelligent & Scalable Systems

None Technical Skills

• Facilitation/consulting

• Communication/Presentation/Sales skill

• Mentoring

• Domain Knowledge of area you working on

• Leadership

• Organizational politics

• Business acumen/Strategy

REliable, INtelligent & Scalable Systems

What is a the best Architect

• The best architects are good technologists and
command respect in the technical community, but also
are good strategists, organizational politicians (in the
best sense of the word), consultants and leaders

REliable, INtelligent & Scalable Systems

Things to remember

1. Focus on people, not technology or techniques. The
greatest architecture model in the world has little
value if you can't find a way to work with developers
effectively and convince them to use it.

2. Keep it simple. The simpler the architecture, the
greater the chance that it will be understood and
actually followed by developers.

REliable, INtelligent & Scalable Systems

Things to remember

3. Work iteratively and incrementally. Your
architecture will evolve over time due to new
requirements, new technological choices, and
greater understanding amongst your enterprise
architecture team.

4. Roll up your sleeves. Developers won't respect you,
and therefore won't accept your architecture, if you
aren't willing to get actively involved in their project
efforts.

REliable, INtelligent & Scalable Systems

Things to remember

5. Build it before you talk about it. Everything works in
diagrams but can fail miserably in practice. Just like
in the RUP, you should prove your application
architecture via technical prototyping; there is no
reason why you can't do the same at the enterprise
level.

6. Look at the whole picture. This is a primary skill of
enterprise architects, which is one of the reasons
why a multi-view approach is so important to you

REliable, INtelligent & Scalable Systems

Things to remember

7. Make architecture attractive to your customers. If
your enterprise architecture artifacts aren't easy to
understand, to access, and to work with, your
customers (developers and senior managers) will
very likely ignore your work.

REliable, INtelligent & Scalable Systems

Conclusion

• How do I start
– Become an excellent developer who knows why not just how

– Understand the relationship of underline technical architecture and
software systems

– Understand current platform specific architecture, J2EE and .NET

– Know the domain you are working on, become an expert

– Read, read, read, think think think

REliable, INtelligent & Scalable Systems

What is Enterprise Application

• Enterprise applications often have complex data -- and lots of it
-- to work on, together with business rules that fail all tests of
logical reasoning.

– Other terms for enterprise applications include “information systems"

– Enterprise applications include payroll, patient records, shipping

tracking, cost analysis, credit scoring, insurance, supply chain,
accounting, customer service, and foreign exchange trading.

– Enterprise applications don't include automobile fuel injection, word

processors, elevator controllers, chemical plant controllers, telephone
switches, operating systems, compilers, and games.

REliable, INtelligent & Scalable Systems

What is Enterprise Application

• Enterprise applications
– usually involve persistent data
– usually have a lot of data
– usually many people access data concurrently
– usually have a lot of user interface screens
– usually they need to integrate with other enterprise

applications scattered around the enterprise
– conceptual dissonance with the data
– complex business "illogic"

REliable, INtelligent & Scalable Systems

Enterprise Applications

• An enterprise system is one that has the following qualities:
– Shares some or all of the resources used by the application

– Is intended for internal use

– Must work within existing architecture

– Will be deployed and supported by internal IT staff

– Requires greater robustness, both in terms of exception-handling and
scalability

– Must fail gracefully

– Must gracefully handle evolution over time

REliable, INtelligent & Scalable Systems

Higher technical complexity
 - Embedded, real-time, distributed, fault-tolerant
 - Custom, unprecedented, architecture reengineering
 - High performance

Lower technical complexity
 - Mostly 4GL, or component-based
 - Application reengineering
 - Interactive performance

Higher
management
complexity
 - Large scale
 - Contractual
 - Many stake holders
 - “Projects”

Lower
management
complexity
 - Small scale
 - Informal
 - Single stakeholder
 - “Products”

Defense
 MIS System

Defense
Weapon System Telecom

Switch

CASE Tool

National Air Traffic
Control System

Enterprise IS
(Family of IS
Applications)

Commercial
Compiler

Business
Spreadsheet

IS Application
Distributed Objects
(Order Entry)

Small Scientific
Simulation

Large-Scale
Organization/Entity
Simulation

 An average software project
 - 5-10 people
 - 3-9 month duration
 - 3-5 external interfaces
 - Some unknowns & risks

Embedded
Automotive
Software

IS Application
GUI/RDB
(Order Entry)

Dimensions of software complexity

Thank You!

