
Architecture of Enterprise Applications IV
Performance Improvement

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)

Shanghai Jiao Tong University

Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems

Agenda

• Performance Improvement
– Memcached

– Cluster

– Reverse Proxy

2

REliable, INtelligent & Scalable Systems

Memcached

• Free & open source, high-performance, distributed memory
object caching system, generic in nature, but intended for use in
speeding up dynamic web applications by alleviating database
load.

• Memcached is an in-memory key-value store for small chunks
of arbitrary data (strings, objects) from results of database calls,
API calls, or page rendering.

• The latest stable memcached release is v1.4.15

3

REliable, INtelligent & Scalable Systems

Memcached

• Example

function get_foo(foo_id)

 foo = memcached_get("foo:" . foo_id)

 return foo if defined foo

 foo = fetch_foo_from_database(foo_id)

 memcached_set("foo:" . foo_id, foo)

 return foo

end

4

REliable, INtelligent & Scalable Systems

Memcached

• Example

$ telnet localhost 11211

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

get foo

VALUE foo 0 2

hi

END

stats

STAT pid 8861

(etc)

5

REliable, INtelligent & Scalable Systems

Memcached

• Design Philosophies
– Simple Key/Value Store

– Smarts Half in Client, Half in Server

– Servers are Disconnected From Each Other

– O(1) Everything

– Forgetting Data is a Feature

– Cache Invalidation is a Hard Problem

6

REliable, INtelligent & Scalable Systems

Memcached

$MEMCACHE_SERVERS = array(
 "10.1.1.1", //web1
 "10.1.1.2", //web2
 "10.1.1.3", //web3
);

$memcache = new Memcache();
foreach($MEMCACHE_SERVERS as $server){
 $memcache->addServer ($server);
}

7

REliable, INtelligent & Scalable Systems

Memcached

$huge_data_for_front_page = $memcache->get("huge_data_for_front_page");
if($huge_data_for_front_page === false){
 $huge_data_for_front_page = array();
 $sql = "SELECT * FROM hugetable WHERE timestamp >

 lastweek ORDER BY timestamp ASC LIMIT 50000";
 $res = mysql_query($sql, $mysql_connection);
 while($rec = mysql_fetch_assoc($res)){
 $huge_data_for_frong_page[] = $rec;
 }
 // cache for 10 minutes
 $memcache->set("huge_data_for_front_page", $huge_data_for_front_page, 0, 600);
}

// use $huge_data_for_front_page how you please

8

REliable, INtelligent & Scalable Systems

Standard Protocol

• Clients of memcached communicate with server through TCP
connections.
– A UDP interface is also available

– A given running memcached server listens on some (configurable) port;
clients connect to that port, send commands to the server, read
responses, and eventually close the connection.

• There are two kinds of data sent in the memcache protocol: text
lines and unstructured data.
– Text lines are used for commands from clients and responses from

servers.

– Unstructured data is sent when a client wants to store or retrieve data.

9

REliable, INtelligent & Scalable Systems

Standard Protocol

• There are three types of commands.
– Storage commands (there are six: "set", "add", "replace", "append"

"prepend" and "cas") ask the server to store some data identified by a
key.

– Retrieval commands (there are two: "get" and "gets") ask the server to
retrieve data corresponding to a set of keys (one or more keys in one
request).

– All other commands don't involve unstructured data. In all of them, the
client sends one command line, and expects (depending on the
command) either one line of response, or several lines of response
ending with "END" on the last line.

10

REliable, INtelligent & Scalable Systems

Storage commands

• <command name> <key> <flags> <exptime> <bytes> [noreply]\r\n

• cas <key> <flags> <exptime> <bytes> <cas unique> [noreply]\r\n

• <command name> is "set", "add", "replace", "append" or "prepend"

– "set" means "store this data".

– "add" means "store this data, but only if the server *doesn't* already
hold data for this key".

– "replace" means "store this data, but only if the server *does* already
hold data for this key".

– "append" means "add this data to an existing key after existing data".

– "prepend" means "add this data to an existing key before existing data".

11

REliable, INtelligent & Scalable Systems

Storage commands

– <key> is the key under which the client asks to store the data

– <flags> is an arbitrary 16-bit unsigned integer (written out in decimal) that the
server stores along with the data and sends back when the item is retrieved.

– <exptime> is expiration time
<bytes> is the number of bytes in the data block to follow, *not* including the
delimiting \r\n.

– <cas unique> is a unique 64-bit value of an existing entry.

• After this line, the client sends the data block:

• <data block>\r\n
– <data block> is a chunk of arbitrary 8-bit data of length <bytes> from

the previous line.

12

REliable, INtelligent & Scalable Systems

Retrieval commands

• get <key>*\r\n
• gets <key>*\r\n

– - <key>* means one or more key strings separated by whitespace.

• After this command, the client expects zero or more items, each of which is

received as a text line followed by a data block. After all the items have been
transmitted, the server sends the string

 "END\r\n"
 to indicate the end of response.

• Each item sent by the server looks like this:
• VALUE <key> <flags> <bytes> [<cas unique>]\r\n
 <data block>\r\n

– <key> is the key for the item being sent
– <flags> is the flags value set by the storage command
– <bytes> is the length of the data block to follow, *not* including its delimiting \r\n
– <cas unique> is a unique 64-bit integer that uniquely identifies this specific item.
– <data block> is the data for this item.

13

REliable, INtelligent & Scalable Systems

Hashing and Clustering

• Hashing
– All clients should be able to hash keys across multiple servers.

• Consistent Hashing
– Most clients have the ability to use consistent hashing, either natively or

via an external library.

• Key of item in Memcached
– E.g. “classname” + “id”

– Blog1208

• Hashing Function
– Key mod #nodes

14

REliable, INtelligent & Scalable Systems

Clustering

• A large-scale system typically:
– Has many user, potentially in many different places

– Is long-running, that is, required to be “always up”

– Processes large numbers of transactions per second

– May see increases in both its user population and system load

– Represents considerable business value

– Is operated and managed by multiple persons

• Essential requirements on large-scale systems are often
summarized by the following three properties(RAS):
– Reliability

– Availability

– Serviceability

– Scalability

15

REliable, INtelligent & Scalable Systems

Clustering

• Clustering addresses many of the issues faced by large-scale
systems at the same time.

• A cluster is a loosely coupled group of servers that provide
unified services to their clients.

• The client’s view of the cluster is a single, simple system, not a
group of collaborating servers. This is referred to as a single-
system view or single-system image.

• Computers in a cluster are called nodes.

16

REliable, INtelligent & Scalable Systems

Clustering

• Clustering can be a very involved technology, potentially
encompassing group communication and replication protocols,
and network components such as load balancers and traffic
redirectors at different layers in the protocol stack.

17

REliable, INtelligent & Scalable Systems

Clustering

• The main principle behind clustering is that of redundancy.
– Reliability

• Remove single points of failure

– Availability

• Overall availability is 1-(1-f%)n

– Serviceability

• More complex than a single application server

• But we could get ability for hot upgrade

– Scalability

• It is cheaper to build a cluster using standard hardware than to rely
on multiprocessor machines.

• Extending a cluster by adding extra servers can be done during
operation and hence is less disruptive than plugging in another CPU
board.

18

REliable, INtelligent & Scalable Systems

Load balancing and Failover

• Load balancing means distributing the requests among cluster nodes to optimize the
performance of the whole system.

– The algorithm that the load balancer uses to decide which target node to pick for
a request can be systematic or random.

– Alternatively, the load balancer could try to monitor the load on the different
nodes in the cluster and pick node that appears less loaded than others.

• An important feature for Web load balancers is session stickiness, which means that
all requests in a client’s session are directed to the same server.

19

REliable, INtelligent & Scalable Systems

Life Cycle of a Stateless Session Bean

20

REliable, INtelligent & Scalable Systems

Life Cycle of a Stateful Session Bean

21

REliable, INtelligent & Scalable Systems

Load balancing and Failover

• For a cluster to provide higher availability to clients that a single server, the
cluster must be able to failover from a primary server to another, secondary
server when failures occur.

– Request-level failover. It occurs when a request that is directed to one node for
servicing cannot be serviced and is subsequently redirected to another node.

– Session failover. If session state is shared between clients and servers, request-
level failover may not be sufficient to continue operations. In this case, the
session state must also be reconstructed at server node.

22

REliable, INtelligent & Scalable Systems

The concept of idempotence

• An idempotent method is one that can be called repeatedly
with the same arguments and achieves the same results each
time.
– HTTP GET

– Generally, any methods that alter a persistent store based on its current state are
not idempotent, since two invocations of the same method will alter the
persistent store twice.

• A failed request could have occurred at one of three points:
– After the request has been initiated but before method invocation on the server

has begun to execute.

– After the method invocation on the server has begun to execute, but before the
method has completed.

– After the method invocation on the server has completed but before the
response has been successfully transmitted to the remote client.

23

REliable, INtelligent & Scalable Systems

Multi-tier applications

• In a Web-based system, the following configurations are possible:

– Collocated architecture

– Distributed architecture

24

REliable, INtelligent & Scalable Systems

25

FEATURE COLLOCATED DISTRIBUTED WINNER?

Reliability High Low Collocated

Availability High Low Collocated

Serviceability High Low Collocated

Network efficiency No sockets More marshalling
overhead

Collocated

Efficient use of hardware High Low Collocated

Security No firewall Firewall Distributed

Serving quick Web
requests that do not
involve EJB components

Web servers are competing for
hardware resources with the
application server

Web servers are
dedicated

Distributed

Conflicts over
responsibility

High Low Distributed

Loading balancing Dispatcher Dispatcher Equal

Multi-tier applications

REliable, INtelligent & Scalable Systems

Clustering on Multicore Nodes

• How should we deploy app servers on a multicore node?

• Essentially, an instance of app server is a single process
– Unless it is implemented in a parallel way

• To cluster multiple instances of app server running on the node
– To modify the ports used in app server

– Or to run them individually in Virtual Machines

• For example
– A Tomcat cluster in a single multicore node

26

REliable, INtelligent & Scalable Systems

Reverse Proxy

• In computer networks, a reverse proxy is a type of proxy
server that retrieves resources on behalf of a client from one or
more servers.
– These resources are then returned to the client as though they

originated from the reverse proxy itself.

27

REliable, INtelligent & Scalable Systems

Uses of Reverse Proxies

• Reverse proxies can hide the existence and characteristics of the
origin server(s).

• Application firewall features can protect against common web-based
attacks.

– Without a reverse proxy, removing malware or initiating takedowns, for
example, can become difficult.

• In the case of secure websites, the SSL encryption is sometimes not
performed by the web server itself, but is instead offloaded to a
reverse proxy that may be equipped with SSL acceleration hardware.

• A reverse proxy can distribute the load from incoming requests to
several servers, with each server serving its own application area.

28

REliable, INtelligent & Scalable Systems

Uses of Reverse Proxies

• A reverse proxy can reduce load on its origin servers by caching
static content, as well as dynamic content.

• A reverse proxy can optimize content by compressing it in
order to speed up loading times.

• In a technique known as "spoon feeding", a dynamically
generated page can be produced all at once and served to the
reverse-proxy, which can then return it to the client a little bit
at a time.

• Reverse proxies can be used whenever multiple web servers
must be accessible via a single public IP address.

29

REliable, INtelligent & Scalable Systems

Apache Reverse Proxy

• A reverse proxy, by contrast, appears to the client just like an
ordinary web server.
– No special configuration on the client is necessary.

– The client makes ordinary requests for content in the name-space of the
reverse proxy.

– The reverse proxy then decides where to send those requests, and
returns the content as if it was itself the origin.

• A typical usage of a reverse proxy is to provide Internet users
access to a server that is behind a firewall.
– Reverse proxies can also be used to balance load among several back-

end servers, or to provide caching for a slower back-end server.

– In addition, reverse proxies can be used simply to bring several servers
into the same URL space.

30

REliable, INtelligent & Scalable Systems

Apache Reverse Proxy

• A reverse proxy is activated using the ProxyPass directive or
the [P] flag to the RewriteRule directive. It is not necessary to
turn ProxyRequests on in order to configure a reverse proxy.

ProxyRequests Off

<Proxy *>
Order deny,allow
Allow from all
</Proxy>

ProxyPass /foo http://foo.example.com/bar
ProxyPassReverse /foo http://foo.example.com/bar

31

REliable, INtelligent & Scalable Systems

References

• http://memcached.org/

• Rima Patel Sriganesh, Gerald Brose, Micah Silverman:
Mastering Enterprise JavaBeans 3.0 4th Edition

• http://en.wikipedia.org/wiki/Reverse_proxy

• http://httpd.apache.org/docs/2.0/mod/mod_proxy.html#forw
ardreverse

32

http://memcached.org/
http://memcached.org/
http://en.wikipedia.org/wiki/Reverse_proxy
http://en.wikipedia.org/wiki/Reverse_proxy
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html

Thank You!

