
Architecture of Enterprise Applications V
Searching

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)

Shanghai Jiao Tong University

Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems

Agenda

• Searching
– Lucene

– Apache Solr

– Percolator

2

REliable, INtelligent & Scalable Systems

Lucene

• Lucene is a high performance, scalable Information Retrieval
(IR) library.
– It lets you add indexing and searching capabilities to your applications.

– Lucene is a mature, free, open-source project implemented in Java.

– it’s a member of the popular Apache Jakarta family of projects, licensed
under the liberal Apache Software License.

• Lucene provides a simple yet powerful core API
– that requires minimal understanding of full-text indexing and searching.

3

REliable, INtelligent & Scalable Systems

Lucene

4

REliable, INtelligent & Scalable Systems

Indexing

5

REliable, INtelligent & Scalable Systems

indexing

• At the heart of all search engines is the concept of indexing:
– processing the original data into a highly efficient cross-reference lookup

in order to facilitate rapid searching.

• Suppose you needed to search a large number of files, and you
wanted to be able to find files that contained a certain word or
a phrase
– A naïve approach would be to sequentially scan each file for the given

word or phrase.

– This approach has a number of flaws, the most obvious of which is that it
doesn’t scale to larger file sets or cases where files are very large.

6

REliable, INtelligent & Scalable Systems

indexing

• This is where indexing comes in:
– To search large amounts of text quickly, you must first index that text

and convert it into a format that will let you search it rapidly, eliminating
the slow sequential scanning process.

– This conversion process is called indexing, and its output is called an
index.

– You can think of an index as a data structure that allows fast random
access to words stored inside it.

7

REliable, INtelligent & Scalable Systems

Inverting index

8

REliable, INtelligent & Scalable Systems

searching

• Searching is the process of looking up words in an index to find
documents where they appear.

• The quality of a search is typically described using precision
and recall metrics.
– Recall measures how well the search system finds relevant documents,

whereas precision measures how well the system filters out the
irrelevant documents.

• A number of other factors
– speed and the ability to quickly search large quantities of text.

– Support for single and multi term queries, phrase queries, wildcards,
result ranking, and sorting are also important, as is a friendly syntax for
entering those queries.

9

REliable, INtelligent & Scalable Systems

A sample application

• Suppose you need to index and search files stored in a directory
tree, not just in a single directory

• These example applications will familiarize you with Lucene’s
API, its ease of use, and its power.

• The code listings are complete, ready-to-use command-line
programs.

10

REliable, INtelligent & Scalable Systems

Creating an Index

 /**
 * This code was originally written for
 * Erik's Lucene intro java.net article
 */
 public class Indexer {

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 throw new Exception("Usage: java " + Indexer.class.getName()
 + " <index dir> <data dir>");
 }
 File indexDir = new File(args[0]);
 File dataDir = new File(args[1]);

 long start = new Date().getTime();
 int numIndexed = index(indexDir, dataDir);
 long end = new Date().getTime();

 System.out.println("Indexing " + numIndexed + " files took " + (end - start) + " milliseconds");
 }

11

Create Lucene index in this directory

Index files in this directory

REliable, INtelligent & Scalable Systems

Creating an Index

 // open an index and start file directory traversal
 public static int index(File indexDir, File dataDir) throws IOException {
 if (!dataDir.exists() || !dataDir.isDirectory()) {
 throw new IOException(dataDir
 + " does not exist or is not a directory");
 }

 IndexWriter writer = new IndexWriter(indexDir,
 new StandardAnalyzer(), true);
 writer.setUseCompoundFile(false);

 indexDirectory(writer, dataDir);

 int numIndexed = writer.docCount();
 writer.optimize();
 writer.close();
 return numIndexed;
 }

12

Create Lucene index

Close index

REliable, INtelligent & Scalable Systems

Creating an Index

 // recursive method that calls itself when it finds a directory
 private static void indexDirectory(IndexWriter writer, File dir)
 throws IOException {

 File[] files = dir.listFiles();

 for (int i = 0; i < files.length; i++) {
 File f = files[i];
 if (f.isDirectory()) {
 indexDirectory(writer, f);
 } else if (f.getName().endsWith(".txt")) {
 indexFile(writer, f);
 }
 }
 }

13

recurse

Index .txt files only

REliable, INtelligent & Scalable Systems

Creating an Index

// method to actually index a file using Lucene
 private static void indexFile(IndexWriter writer, File f)
 throws IOException {

 if (f.isHidden() || !f.exists() || !f.canRead()) {
 return;
 }

 System.out.println("Indexing " + f.getCanonicalPath());

 Document doc = new Document();
 doc.add(Field.Text("contents", new FileReader(f)));

 doc.add(Field.Keyword("filename", f.getCanonicalPath()));
 writer.addDocument(doc);
 }
}

14

Index file content

Index file name

Add document to Lucene index

REliable, INtelligent & Scalable Systems

Running Indexer

% java lia.meetlucene.Indexer build/index/lucene
Indexing /lucene/build/test/TestDoc/test.txt
Indexing /lucene/build/test/TestDoc/test2.txt
Indexing /lucene/BUILD.txt
Indexing /lucene/CHANGES.txt
Indexing /lucene/LICENSE.txt
Indexing /lucene/README.txt
Indexing /lucene/src/jsp/README.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/stemsUnicode.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/test1251.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/testKOI8.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/testUnicode.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/wordsUnicode.txt
Indexing /lucene/todo.txt
Indexing 13 files took 2205 milliseconds

15

REliable, INtelligent & Scalable Systems

Searching an index

 /**
 * This code was originally written for
 * Erik's Lucene intro java.net article
 */
 public class Searcher {

 public static void main(String[] args) throws Exception {
 if (args.length != 2) {
 throw new Exception("Usage: java " + Searcher.class.getName()
 + " <index dir> <query>");
 }
 File indexDir = new File(args[0]);
 String q = args[1];

 if (!indexDir.exists() || !indexDir.isDirectory()) {
 throw new Exception(indexDir +
 " does not exist or is not a directory.");
 }

 search(indexDir, q);
 }

16

Index directory created by Indexer

Query string

REliable, INtelligent & Scalable Systems

Searching an index

 public static void search(File indexDir, String q)
 throws Exception {
 Directory fsDir = FSDirectory.getDirectory(indexDir, false);
 IndexSearcher is = new IndexSearcher(fsDir);

 Query query = QueryParser.parse(q, "contents", new StandardAnalyzer());
 long start = new Date().getTime();
 Hits hits = is.search(query);
 long end = new Date().getTime();

 System.err.println("Found " + hits.length() + " document(s) (in " + (end - start) +
 " milliseconds) that matched query '" + q + "':");

 for (int i = 0; i < hits.length(); i++) {
 Document doc = hits.doc(i);
 System.out.println(doc.get("filename"));
 }
 }
 }

17

Write search stats

Open Index

Parse query

Search Index

Retrieve matching document

Display filename

REliable, INtelligent & Scalable Systems

Running Searcher

%java lia.meetlucene.Searcher build/index 'lucene'

Found 6 document(s) (in 66 milliseconds) that matched query 'lucene':

/lucene/README.txt

/lucene/src/jsp/README.txt

/lucene/BUILD.txt

/lucene/todo.txt

/lucene/LICENSE.txt

/lucene/CHANGES.txt

18

REliable, INtelligent & Scalable Systems

Core indexing classes

• IndexWriter
– This class creates a new index and adds documents to an existing index.

• Directory
– The Directory class represents the location of a Lucene index.

• Analyzer
– The Analyzer, specified in the IndexWriter constructor, is in charge of extracting

tokens out of text to be indexed and eliminating the rest.

• Document
– A Document represents a collection of fields.

• Field
– Each field corresponds to a piece of data that is either queried against or

retrieved from the index during search.

19

REliable, INtelligent & Scalable Systems

Core searching classes

• IndexSearcher
– IndexSearcher is to searching what IndexWriteris to indexing

• Term
– A Term is the basic unit for searching.

• Query
– Query is the common, abstract parent class. It contains several utility methods

• TermQuery
– TermQuery is the most basic type of query supported by Lucene, and it’s one of

the primitive query types.

• Hits
– The Hits class is a simple container of pointers to ranked search results

20

REliable, INtelligent & Scalable Systems

Apache Solr

• Solr is the popular, blazing fast open source enterprise search
platform from the Apache Lucene project.

• Its major features include powerful full-text search, hit
highlighting, faceted search, dynamic clustering, database
integration, rich document (e.g., Word, PDF) handling, and
geospatial search.

21

REliable, INtelligent & Scalable Systems

Apache Solr

• Advanced Full-Text Search Capabilities

• Optimized for High Volume Web Traffic

• Standards Based Open Interfaces - XML,JSON and HTTP

• Comprehensive HTML Administration Interfaces

• Server statistics exposed over JMX for monitoring

• Scalability - Efficient Replication to other Solr Search Servers

• Flexible and Adaptable with XML configuration

• Extensible Plugin Architecture

22

REliable, INtelligent & Scalable Systems

Apache Solr

23

REliable, INtelligent & Scalable Systems

Core techniques of cloud computing

•

• MapReduce
– parallelizes the computation, distributes the data, and handles failures conspire to obscure

the original simple computation with large amounts of complex code to deal with these
issues.

REliable, INtelligent & Scalable Systems

Core techniques of cloud computing

•

• Distributed Google File System
– Google File System(GFS) to meet the rapidly growing demands of Google’s data processing

needs.

REliable, INtelligent & Scalable Systems

Core techniques of cloud computing

•

• Bigtable
– Bigtable is a distributed storage system for managing structured data that is designed to

scale to a very large size: petabytes of data across thousands of commodity servers.

REliable, INtelligent & Scalable Systems

Google Percolator

• Daniel Peng and Frank Dabek
– OSDI 2010

• Percolator is a system for incrementally processing updates to
a large data set, and deployed it to create the Google web
search index.

• Problem
– Existing DBMSs can’t handle the sheer volume of data: Google’s indexing

system stores tens of petabytes across thousands of machines

– Given that the system will be processing many small updates
concurrently, and ideal system would also provide mechanisms for
maintaining invariants despite concurrent updates and for keeping track
of which updates have been processed.

27

REliable, INtelligent & Scalable Systems

Google Percolator

• Percolator
– Provides the user with random access to a multi-PB repository.

– Random access allows us to process documents individually, avoiding
the global scans of the repository that MapReduce requires.

– To achieve high throughput, many threads on many machines need to
transform the repository concurrently, so Percolator provides ACID-
compliant transactions to make it easier for programmers to reason
about the state of the repository.

– Percolator provides observers: pieces of code that are invoked by the
system whenever a user-specified column changes.

28

REliable, INtelligent & Scalable Systems

Google Percolator

• Design
– ACID transaction over a random-access repository

– Observers, a way to organize an incremental computation

• A Percolator system consists of three binaries that run on every
machine in the cluster:
– A Percolator worker

– A Bigtable tablet server

– and a GFS chunk server

– All observers are linked into the Percolator worker

• The system also depends on two small services:
– the timestamp oracle

– and the lightweight lock service.

29

REliable, INtelligent & Scalable Systems

Google Percolator

• Two phases of commit

30

REliable, INtelligent & Scalable Systems

Google Percolator

• Two phases of commit

31

REliable, INtelligent & Scalable Systems

Google Percolator

• Two phases of commit

32

REliable, INtelligent & Scalable Systems

Google Percolator

• Two phases of commit

33

REliable, INtelligent & Scalable Systems

Google Percolator

• Two phases of commit

34

REliable, INtelligent & Scalable Systems

Google Percolator

• Two phases of commit

35

REliable, INtelligent & Scalable Systems

References

• Otis Gospodnetic, Erik Hatcher, Lucene in Action, MANNING
• http://lucene.apache.org/solr/
• Rafal Kuc, Apache Solr 3.1 Cookbook, PACKT
• MapReduce: Simplied Data Processing on Large Clusters

– Jeffrey Dean and Sanjay Ghemawat
– OSDI 2004

• The Google File System
– Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
– SOSP 2003

• Bigtable: A Distributed Storage System for Structured Data
– Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber
– OSDI 2006

• Large-scale Incremental Processing Using Distributed Transactions and
Notifications
– Daniel Peng, Frank Dabek,
– OSDI 2010

36

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

Thank You!

