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REINS Data Centers are Evolving! 

 
• Data centers are built upon 

3 fundamental pillars: 
– Compute 
– Network 
– Storage 

 
• To achieve high efficiency 

in performance & 
utilization 
– A balanced data center is 

essential!  
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REINS Storage Capacity Growth 

Structured data (23.6% ↑)  
• Traditional enterprise database 

Replicated data (24.2% ↑) 
• Backups  
• Data warehouses 

Unstructured data (54.8% ↑) 
• Archives 

Content Depots (75.6% ↑) 
• Web 
• Email 
• Document sharing 
• Social network content (pictures/videos) 
 
2012 deployment estimation 
  ~ 7.6 million drives 
  ~ 500,000 storage systems 
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REINS Solutions dictated by Usage Models 
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Capacity Requirement 

Application Data Store 
(e.g. e-mail, VM/Boot, Sharepoint*) 

Large Structured DB  
(e.g. NoSQL, non ACID)  

Content Distribution Network (CDN) 

Relational DB 
(OLTP, OLAP) 
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Gigabytes Terabytes Petabytes Exabytes 

Performance 
Storage 

Capacity  
Storage Backup and Archive 

(server and client) 

Cloud Object Storage 
(e.g. photos/videos) 

Large Analytics  
(e.g Hadoop/HDFS)  

High-performance Compute  
(e.g. pNFS, Luster) 

Different storage usage models create different ecosystems!  



                                

REINS Storage Interface 

• Storage Interface 
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HEAD / GET / PUT / POST / DELETE / COPY 



                                

REINS Object Storage in Getting Accepted 
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Object storage have been increasingly recognized as 
a right destination for data outsourcing 



                                

REINS Challenges …  

• The proliferation of existing offerings 
– Amazon S3, Rackspace Cloud Files, Google Cloud Storage, HP Cloud 

Object Storage, Windows Azure, EMC ATMOS, Openstack Swift, Ceph, … 
– coupled with a lack of workload modeling object storage apps 
– makes it difficult for one to choose the right infrastructure! 

 

• Tuning systems to their optimal performance is also nontrivial 
– resulted from the complexity in the designs of various available solutions 
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We need a benchmark tool 
dedicated for object storage system! 



                                

REINS We present COSBench 

• People can use this tool to evaluate & compare different 
– hardware and software stacks 
– and obtain a better understanding of these offerings 

 
 
• People can also use this tool to characterize their systems 

– and get insights to guide system designs, tuning, & optimization 
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REINS 
• Config.xml: 

– define workload with flexibility. 

• Controller:  
– Control all drivers  
– Collect and aggregate stats. 

• Driver:  
– generate workload according to 

config parameters. 
– can run tests without a supervising 

controller. 

• Web Console: 
– System facade 
– Browse real-time stats 
– HTTP based Communication 

(RESTful style) 
 

COSBench Key Component 

    
      

        
  

Cloud Object Storage 
System 

  driver   driver   driver   driver 

  controller 

  HTTP HTTP 
HTTP HTTP 

HTTP 

command-line 
COSBench 

  archive   
Automation 

Tool 

  

Administrator 

  browser 

export 

  
response 
time 
throughput 
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REINS Web Console 

Controller Driver 

DEMO 
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REINS Workload Configuration 

Flexible configuration which gives birth to diverse usage patterns 

Workflow Model 

Read/Write Patterns 

Flexible Load Control 

Path/Size Distribution 

Extensible Parameters 
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REINS Configurable workload 

– Mixed operations (GET/PUT…) 
– Mixed object sizes 
– Multiple stages 
– Auth/storage association 
– Load control 
– Extensible parameters 
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Workload 

Workstage 

Work 

Operation 
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Storage 

Stress multiple systems simultaneously 

12 



                                

REINS 

Context 

Extensible API 

• Separate auth and storage 
API, so  

- One auth  multiple 
storages 

- One storage  multiple 
auths 
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AuthAPI 

StorageAPI 

PUT 

GET 

Auth 

DELETE 

Extensible API which support various storage systems 
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REINS Modular Design 
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OSGi Infrastructure 

import 
OSGi Service Registry 

storage service auth service 

keystone swauth mock s3 swift 

driver 

    import 

export export export export export export 

COSBench Driver 

New adaptors can be separately developed, individually configured, and 
dynamically plugged into the env. without the knowledge of the core system 



                                

REINS Performance Metrics 

• Throughput (Operations/s): the operations completed in one 
second 

• Response Time (in ms): the duration between operation 
initiation and completion. 

• Bandwidth (KB/s): the total data in KiB transferred in one 
second 

• Success Ratio (%): the ratio of successful operations 
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REINS Swift 

• Object Storage for Openstack 
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REINS Main Features 

• As an object storage system, Swift: 
 

1. allows users to create containers and to 
stores data objects in these containers 

• objects are identified by their paths and have 
metadata associated with them 

 
2. can be accessed via “RESTFul” interface 
– including “GET”/”PUT”/”DELETE” 

 
3. can be well built upon commodity 

storage devices and is highly scalable 
– achieving cost effectiveness 

 
4. is redundant and is eventually consistent 
– suitable for long-term storage 

SSG- > SSD -> SOTC -> PRC SCALABILITY 
LAB 

2012-08-
09 

container 

object 

As you see, container  

cannot be nested 



                                

REINS Services on Proxy/Storage Node 

•Proxy Node 
– proxy-server 

• cluster gateway 

– swauth-server 
• authentication & authorization 

•Storage Node 
– account/container/object  -

server 
• listing containers 
• listing objects 
• saving/retrieving/removing 

objects 

– account/container/object  -
replicator 
• pushing local replicas to other 

storage nodes should replicas of 
those nodes are missing 

– account/container/object  -
auditor 
• quarantining local corrupted 

data entities 

– container/object  -updater 
• updating metadata 

asynchronously 
2012-08-09 



                                

REINS Load Balance 

• A ring maintains its mapping using 
• physical perspective: devices 
• logical perspective: partitions 
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REINS 

• A ring maintains its mapping using 
• physical perspective: devices 
• logical perspective: partitions -> replicas 

Partitions 

Partitions 

Partitions 

Load Balance 
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REINS How ring is initialized? 

• In ring, each device is associated with metadata 
• describing device’s weight, # replica wanted and # replica assigned 

 
• A ring is built as 

• replicas from each partitions are in turn assigned to 
• the device currently enjoying the highest value of 

– “# replica wanted - # replica assigned” 

• Note that best attempts will be made to assign replicas from a sample 
partition to different zones or at least different nodes if possible 
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REINS 

  Setup I 
 - CPU: 2 * 2.7GHz (8C/16T) 
 - MEM: 32GB DDR3 1333MHz 
 - NIC: 2 *  10GbE 

  Setup II 
 - CPU: 2 * 2.267GHz (8C/16T) 
 - MEM: 64GB DDR3 1333MHz 
 - NIC: 2 * 10GbE 

  Setup I 
 - 14 * 1T SATA (5,400 rpm) 

  Setup II 
 - 12 * 70GB SAS (14,000 rpm) 

  Setup I/II 
 - CPU: 2 * 2.93GHz (4C/8T) 
 - MEM: 12GB DDR3 1333MHz 
 - NIC: 2 * IGbE bonding (mode=rr) 

Proxy 
Node 

Ethernet 

Ethernet 

10GbE 

10GbE 

Client 
Network 

Storage 
Network 

Storage 
Node 

Storage 
Node 

Storage 
Node 

Storage 
Node 

Storage 
Node 

2GbE 2GbE 2GbE 2GbE 2GbE 

          

Client Node Client Node Client Node Client Node 

2GbE 2GbE 2GbE 2GbE 2GbE 

Client Node 

Setup-I had higher CPU power, Setup-II had faster disks 

System Configuration 
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REINS A: 128KB-Read 
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Workers 95%-ResTime Throughput 
ms op/s 

5 20.00  369.49  

10 20.00  711.24  

20 20.00  1383.30  

40 30.00  2517.94  

80 46.67  3662.71  

160 56.67  4693.97  

320 106.67  5019.85  
640 230.00  4998.13  

1280 470.00  4947.15  

2560 923.33  4840.19  
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128KB-Read 
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• SLA: 200ms + 128KB/1MBps = 325ms 
 

The bottleneck was identified to be the proxy’s CPU 
 -- The CPU utilization at that node was 93%! 

 -- The peak throughput for setup-I was  5576 op/s (640 workers) 

↑ CPU could↑ throughput 



                                

REINS B: 128KB-Write 
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Workers 95%-ResTime Throughput 
ms op/s 

5 40.00  219.73  

10 40.00  391.14  

20 50.00  668.19  

40 70.00  1022.07  

80 100.00  1333.34  

160 143.33  1594.12  
320 370.00  1769.55  

640 1223.33  1773.12  

1280 1690.00  1871.58  

2560 3160.00  1886.81  

• SLA: 200ms + 128KB/1MBps = 325ms 
 

The Disks at storage nodes had significant impact on overall throughput 

 -- The peak throughput for setup-I was only 155 op/s (20 clients) 

 -- HDD  SSD in setup-I would ↑ throughput to 1621 op/s (320 clients) 
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REINS C: 10MB-Read 
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Workers 95%-ResTime Throughput 
ms op/s 

5 270.00  34.69  

10 320.00  51.87  

20 480.00  59.91  

40 900.00  65.48  
80 1636.67  67.37  

160 3093.33  68.69  

320 5950.00  69.58  

640 11906.67  70.18  

1280 24090.00  71.41  

2560 52090.00  72.90  

• SLA: 200ms + 10MB/1MBps = 1200ms 
 

The bottleneck was identified to be the clients’ NICs 
 -- in setup-II, adding 5 more clients ↑throughput to 103 op/s (80 clients) 
 -- in setup-I, using vClient + SRIOV could achieve similar improvements 
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REINS 

13.12  
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D: 10MB-Write 

Workers 95%-ResTime Throughput 
ms op/s 

5 536.67  13.12  

10 936.67  17.50  
20 1596.67  20.28  

40 2786.67  21.30  

80 5133.33  21.38  

160 9800.00  22.21  

320 18623.33  23.19  

640 41576.67  23.23  

1280 102090.00  21.55  

2560 200306.67  23.71  

• SLA: 200ms + 10MB/1MBps = 1200ms 
 

The bottleneck might be the storage nodes’ NICs 
 -- in setup-I, the peak throughput was 15.74 op/s (10 clients) 

 -- in both setups, the write performance was 1/3 of the read performance 
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Thank you! 
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