
COSBench:
Cloud Object Storage

Benchmark

Qing Zheng
Reliable, Scalable, Intelligent Systems Group

School of Software, Shanghai Jiao Tong University

http://reins.se.sjtu.edu.cn

Oct. 12nd, 2012

qzheng2010@hotmail.com

http://reins.se.sjtu.edu.cn/

REINS Data Centers are Evolving!

• Data centers are built upon

3 fundamental pillars:
– Compute
– Network
– Storage

• To achieve high efficiency

in performance &
utilization
– A balanced data center is

essential!

2012/10/21 REINS Group, School of Software, SJTU 2

Storage
Open

Platforms
Network
Common

Fabrics

Compute

Flexible
Workloads

Virtualized
Infrastructure

REINS Storage Capacity Growth

Structured data (23.6% ↑)
• Traditional enterprise database

Replicated data (24.2% ↑)
• Backups
• Data warehouses

Unstructured data (54.8% ↑)
• Archives

Content Depots (75.6% ↑)
• Web
• Email
• Document sharing
• Social network content (pictures/videos)

2012 deployment estimation
 ~ 7.6 million drives
 ~ 500,000 storage systems

2012/10/21 REINS Group, School of Software, SJTU 3

10

20

30

40

50

60

70

80

90

2009 2010 2011 2012 2013 2014

EB

REINS Solutions dictated by Usage Models

2012/10/21 REINS Group, School of Software, SJTU 4

Pe
rf

or
m

an
ce

 R
eq

ui
re

m
en

t
(R

eq
ue

st
s

pe
r

se
co

nd
)

Capacity Requirement

Application Data Store
(e.g. e-mail, VM/Boot, Sharepoint*)

Large Structured DB
(e.g. NoSQL, non ACID)

Content Distribution Network (CDN)

Relational DB
(OLTP, OLAP)

R
an

do
m

 &
 S

m
al

l
Se

qu
en

ti
al

 &
 L

ar
ge

Gigabytes Terabytes Petabytes Exabytes

Performance
Storage

Capacity
Storage Backup and Archive

(server and client)

Cloud Object Storage
(e.g. photos/videos)

Large Analytics
(e.g Hadoop/HDFS)

High-performance Compute
(e.g. pNFS, Luster)

Different storage usage models create different ecosystems!

REINS Storage Interface

• Storage Interface

5

Object
Storage

PUT /images/avatar.png
Content-Length: 1420
X-Auth-Token: F989D213

HTTP 1.1 201 Created
Date: 07 Sep 2012 03:00:24
E-Tag: 35ABC629D

Client
Application

HTTP
Request

HTTP
Response

2012/10/21 REINS Group, School of Software, SJTU

HEAD / GET / PUT / POST / DELETE / COPY

REINS Object Storage in Getting Accepted

2012/10/21 REINS Group, School of Software, SJTU 6

Object storage have been increasingly recognized as
a right destination for data outsourcing

REINS Challenges …

• The proliferation of existing offerings
– Amazon S3, Rackspace Cloud Files, Google Cloud Storage, HP Cloud

Object Storage, Windows Azure, EMC ATMOS, Openstack Swift, Ceph, …
– coupled with a lack of workload modeling object storage apps
– makes it difficult for one to choose the right infrastructure!

• Tuning systems to their optimal performance is also nontrivial
– resulted from the complexity in the designs of various available solutions

2012/10/21 REINS Group, School of Software, SJTU 7

We need a benchmark tool
dedicated for object storage system!

REINS We present COSBench

• People can use this tool to evaluate & compare different
– hardware and software stacks
– and obtain a better understanding of these offerings

• People can also use this tool to characterize their systems

– and get insights to guide system designs, tuning, & optimization

2012/10/21 REINS Group, School of Software, SJTU 8

Throughput / Latency / Scalability / Flexibility

Architecture Decisions / Algorithms / Hardware Impacts / Innovation

REINS
• Config.xml:

– define workload with flexibility.

• Controller:
– Control all drivers
– Collect and aggregate stats.

• Driver:
– generate workload according to

config parameters.
– can run tests without a supervising

controller.

• Web Console:
– System facade
– Browse real-time stats
– HTTP based Communication

(RESTful style)

COSBench Key Component

Cloud Object Storage
System

 driver driver driver driver

 controller

 HTTP HTTP
HTTP HTTP

HTTP

command-line
COSBench

 archive
Automation

Tool

Administrator

 browser

export

response
time
throughput

2012/10/21 REINS Group, School of Software, SJTU 9

REINS Web Console

Controller Driver

DEMO

2012/10/21 REINS Group, School of Software, SJTU 10

REINS Workload Configuration

Flexible configuration which gives birth to diverse usage patterns

Workflow Model

Read/Write Patterns

Flexible Load Control

Path/Size Distribution

Extensible Parameters

2012/10/21 REINS Group, School of Software, SJTU 11

REINS Configurable workload

– Mixed operations (GET/PUT…)
– Mixed object sizes
– Multiple stages
– Auth/storage association
– Load control
– Extensible parameters

REINS Group, School of Software, SJTU

Workload

Workstage

Work

Operation

Auth

Storage

Stress multiple systems simultaneously

12

REINS

Context

Extensible API

• Separate auth and storage
API, so

- One auth multiple
storages

- One storage multiple
auths

REINS Group, School of Software, SJTU

AuthAPI

StorageAPI

PUT

GET

Auth

DELETE

Extensible API which support various storage systems

13

REINS Modular Design

2012/10/21 REINS Group, School of Software, SJTU 14

OSGi Infrastructure

import
OSGi Service Registry

storage service auth service

keystone swauth mock s3 swift

driver

 import

export export export export export export

COSBench Driver

New adaptors can be separately developed, individually configured, and
dynamically plugged into the env. without the knowledge of the core system

REINS Performance Metrics

• Throughput (Operations/s): the operations completed in one
second

• Response Time (in ms): the duration between operation
initiation and completion.

• Bandwidth (KB/s): the total data in KiB transferred in one
second

• Success Ratio (%): the ratio of successful operations

2012/10/21 REINS Group, School of Software, SJTU 15

REINS Swift

• Object Storage for Openstack

2012/10/21 REINS Group, School of Software, SJTU 16

REINS Main Features

• As an object storage system, Swift:

1. allows users to create containers and to
stores data objects in these containers

• objects are identified by their paths and have
metadata associated with them

2. can be accessed via “RESTFul” interface
– including “GET”/”PUT”/”DELETE”

3. can be well built upon commodity

storage devices and is highly scalable
– achieving cost effectiveness

4. is redundant and is eventually consistent
– suitable for long-term storage

SSG- > SSD -> SOTC -> PRC SCALABILITY
LAB

2012-08-
09

container

object

As you see, container

cannot be nested

REINS Services on Proxy/Storage Node

•Proxy Node
– proxy-server

• cluster gateway

– swauth-server
• authentication & authorization

•Storage Node
– account/container/object -

server
• listing containers
• listing objects
• saving/retrieving/removing

objects

– account/container/object -
replicator
• pushing local replicas to other

storage nodes should replicas of
those nodes are missing

– account/container/object -
auditor
• quarantining local corrupted

data entities

– container/object -updater
• updating metadata

asynchronously
2012-08-09

REINS Load Balance

• A ring maintains its mapping using
• physical perspective: devices
• logical perspective: partitions

REINS Group, School of Software, SJTU

p2
sn1/sda1

logical physical

Devices

p9

sn2/sdb1

object2

object1

name

Partitions
name

ring

p13

sn2/sdd1

19

REINS

• A ring maintains its mapping using
• physical perspective: devices
• logical perspective: partitions -> replicas

Partitions

Partitions

Partitions

Load Balance

REINS Group, School of Software, SJTU

Devices

p2

object1

name

logical physical

replica1

replica2

replica3

sn4/sdd1

sn1/sdd1

sn2/sdd1

ring

20

REINS How ring is initialized?

• In ring, each device is associated with metadata
• describing device’s weight, # replica wanted and # replica assigned

• A ring is built as

• replicas from each partitions are in turn assigned to
• the device currently enjoying the highest value of

– “# replica wanted - # replica assigned”

• Note that best attempts will be made to assign replicas from a sample
partition to different zones or at least different nodes if possible

REINS Group, School of Software, SJTU 21

REINS

 Setup I
 - CPU: 2 * 2.7GHz (8C/16T)
 - MEM: 32GB DDR3 1333MHz
 - NIC: 2 * 10GbE

 Setup II
 - CPU: 2 * 2.267GHz (8C/16T)
 - MEM: 64GB DDR3 1333MHz
 - NIC: 2 * 10GbE

 Setup I
 - 14 * 1T SATA (5,400 rpm)

 Setup II
 - 12 * 70GB SAS (14,000 rpm)

 Setup I/II
 - CPU: 2 * 2.93GHz (4C/8T)
 - MEM: 12GB DDR3 1333MHz
 - NIC: 2 * IGbE bonding (mode=rr)

Proxy
Node

Ethernet

Ethernet

10GbE

10GbE

Client
Network

Storage
Network

Storage
Node

Storage
Node

Storage
Node

Storage
Node

Storage
Node

2GbE 2GbE 2GbE 2GbE 2GbE

Client Node Client Node Client Node Client Node

2GbE 2GbE 2GbE 2GbE 2GbE

Client Node

Setup-I had higher CPU power, Setup-II had faster disks

System Configuration

2012/10/21 REINS Group, School of Software, SJTU 22

REINS A: 128KB-Read

2012/10/21 REINS Group, School of Software, SJTU 23

Workers 95%-ResTime Throughput
ms op/s

5 20.00 369.49

10 20.00 711.24

20 20.00 1383.30

40 30.00 2517.94

80 46.67 3662.71

160 56.67 4693.97

320 106.67 5019.85
640 230.00 4998.13

1280 470.00 4947.15

2560 923.33 4840.19

0.37k
0.71k

1.38k

2.52k

3.66k

4.69k
5.02k 5.00k 4.95k 4.84k

0

200

400

600

800

1000

0.0k

1.5k

3.0k

4.5k

6.0k

5 10 20 40 80 160 320 640 1280 2560

re
sp

on
se

 ti
m

e
(m

s)

th
ro

ug
hp

ut
 (

op
/s

)

Total Number of Worker

128KB-Read

Throughput Avg-ResTime 95%-ResTime

• SLA: 200ms + 128KB/1MBps = 325ms

The bottleneck was identified to be the proxy’s CPU
 -- The CPU utilization at that node was 93%!

 -- The peak throughput for setup-I was 5576 op/s (640 workers)

↑ CPU could↑ throughput

REINS B: 128KB-Write

2012/10/21 REINS Group, School of Software, SJTU 24

Workers 95%-ResTime Throughput
ms op/s

5 40.00 219.73

10 40.00 391.14

20 50.00 668.19

40 70.00 1022.07

80 100.00 1333.34

160 143.33 1594.12
320 370.00 1769.55

640 1223.33 1773.12

1280 1690.00 1871.58

2560 3160.00 1886.81

• SLA: 200ms + 128KB/1MBps = 325ms

The Disks at storage nodes had significant impact on overall throughput

 -- The peak throughput for setup-I was only 155 op/s (20 clients)

 -- HDD SSD in setup-I would ↑ throughput to 1621 op/s (320 clients)

0.22k
0.39k

0.67k

1.02k

1.33k

1.59k
1.77k 1.77k 1.87k 1.89k

0

800

1600

2400

3200

4000

0.0k

0.5k

1.0k

1.5k

2.0k

5 10 20 40 80 160 320 640 1280 2560

re
sp

on
se

 ti
m

e
(m

s)

th
ro

ug
hp

ut
 (

op
/s

)

Total Number of Worker

128KB-Write

Throughput Avg-ResTime 95%-ResTime

storage disks throughput

REINS C: 10MB-Read

2012/10/21 REINS Group, School of Software, SJTU 25

Workers 95%-ResTime Throughput
ms op/s

5 270.00 34.69

10 320.00 51.87

20 480.00 59.91

40 900.00 65.48
80 1636.67 67.37

160 3093.33 68.69

320 5950.00 69.58

640 11906.67 70.18

1280 24090.00 71.41

2560 52090.00 72.90

• SLA: 200ms + 10MB/1MBps = 1200ms

The bottleneck was identified to be the clients’ NICs
 -- in setup-II, adding 5 more clients ↑throughput to 103 op/s (80 clients)
 -- in setup-I, using vClient + SRIOV could achieve similar improvements

34.69

51.87
59.91

65.48 67.37 68.69 69.58 70.18 71.41 72.90

0

10,000

20,000

30,000

40,000

50,000

60,000

0

20

40

60

80

5 10 20 40 80 160 320 640 1280 2560

re
sp

on
se

 ti
m

e
(m

s)

th
ro

ug
hp

ut
 (

op
/s

)

Total Number of Worker

10MB -Read

Throughput Avg-ResTime 95%-ResTime

REINS

13.12

17.50
20.28 21.30 21.38 22.21 23.19 23.23

21.55
23.71

0

50,000

100,000

150,000

200,000

250,000

0

5

10

15

20

25

5 10 20 40 80 160 320 640 1280 2560

re
sp

on
se

 ti
m

e
(m

s)

th
ro

ug
hp

ut
 (

op
/s

)

Total Number of Worker

10MB-Write

Throughput Avg-ResTime 95%-ResTime

D: 10MB-Write

Workers 95%-ResTime Throughput
ms op/s

5 536.67 13.12

10 936.67 17.50
20 1596.67 20.28

40 2786.67 21.30

80 5133.33 21.38

160 9800.00 22.21

320 18623.33 23.19

640 41576.67 23.23

1280 102090.00 21.55

2560 200306.67 23.71

• SLA: 200ms + 10MB/1MBps = 1200ms

The bottleneck might be the storage nodes’ NICs
 -- in setup-I, the peak throughput was 15.74 op/s (10 clients)

 -- in both setups, the write performance was 1/3 of the read performance

2012/10/21 REINS Group, School of Software, SJTU 26

27

Thank you!

2012/10/21 REINS Group, School of Software, SJTU

