
Architecture of Enterprise Applications V
Quality Attributes

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)

Shanghai Jiao Tong University

Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems
Why do we should consider QA?

• Business considerations determine qualities that must be
accommodated in a system's architecture.
– These qualities are over and above that of functionality, which is the

basic statement of the system's capabilities, services, and behavior

• Systems are frequently redesigned not because they are
functionally deficient, but because they are difficult to maintain,
port, or scale, or are too slow, or have been compromised by
network hackers.
– the replacements are often functionally identical

REliable, INtelligent & Scalable Systems
Functionality and Architecture

• Functionality and quality attributes are orthogonal
– this is not to say that any level of any quality attribute is

achievable with any function.

– any of functions your choices as an architect will determine the
relative level of quality

• What is functionality?
– It is the ability of the system to do the work for which it was

intended.

• Functionality may be achieved through the use of any of
a number of possible structures.

REliable, INtelligent & Scalable Systems
Architecture and Quality Attributes

• Achieving quality attributes must be considered
throughout design, implementation, and deployment.
– No quality attribute is entirely dependent on design, nor is it

entirely dependent on implementation or deployment.

• Satisfactory results are a matter of getting the big
picture (architecture) as well as the details
(implementation) correct. For example:
– Usability
– Modifiability
– Performance

REliable, INtelligent & Scalable Systems
Architecture and Quality Attributes

• The message of this section is twofold:
– Architecture is critical to the realization of many qualities of

interest in a system, and these qualities should be designed in
and can be evaluated at the architectural level.

– Architecture, by itself, is unable to achieve qualities. It provides
the foundation for achieving quality, but this foundation will be
to no avail if attention is not paid to the details.

REliable, INtelligent & Scalable Systems
Architecture and Quality Attributes

• Within complex systems, quality attributes can never be achieved
in isolation. The achievement of any one will have an effect,
sometimes positive and sometimes negative, on the achievement of
others.

– security and reliability

– almost every quality attribute negatively affects performance

• We will examine the following three classes:
– Qualities of the system. We will focus on availability,

modifiability, performance, security, testability, and usability.

– Business qualities (such as time to market) that are affected by
the architecture.

– Architecture qualities, such as conceptual integrity, that are
about the architecture itself although they indirectly affect
other qualities, such as modifiability.

REliable, INtelligent & Scalable Systems
Quality Attribute Scenarios

• A quality attribute scenario is a quality-attribute-specific requirement. It
consists of six parts.

– Source of stimulus. This is some entity (a human, a computer system, or
any other actuator) that generated the stimulus.

– Stimulus. The stimulus is a condition that needs to be considered when it
arrives at a system.

– Environment. The stimulus occurs within certain conditions. The system
may be in an overload condition or may be running when the stimulus
occurs, or some other condition may be true.

– Artifact. Some artifact is stimulated. This may be the whole system or
some pieces of it.

– Response. The response is the activity undertaken after the arrival of the
stimulus.

– Response measure. When the response occurs, it should be measurable in
some fashion so that the requirement can be tested.

Architecture of Enterprise Applications V
Availability

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)

Shanghai Jiao Tong University

Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

REliable, INtelligent & Scalable Systems
AVAILABILITY

• Availability is concerned with system failure and its
associated consequences.
– system failure occurs when the system no longer delivers a

service consistent with its specification. Such a failure is
observable by the system's users—either humans or other
systems.

• Among the areas of concern are
– how system failure is detected
– how frequently system failure may occur
– what happens when a failure occurs
– how long a system is allowed to be out of operation
– when failures may occur safely
– how failures can be prevented
– what kinds of notifications are required when a failure occurs

REliable, INtelligent & Scalable Systems
AVAILABILITY

• We need to differentiate between failures and faults.
– A fault may become a failure if not corrected or masked. That is,

a failure is observable by the system's user and a fault is not.
When a fault does become observable, it becomes a failure.

– For example, a fault can be choosing the wrong algorithm for a
computation, resulting in a miscalculation that causes the
system to fail.

• Once a system fails, an important related concept
becomes the time it takes to repair it.
– Since a system failure is observable by users, the time to repair

is the time until the failure is no longer observable.

REliable, INtelligent & Scalable Systems
AVAILABILITY

• The distinction between faults and failures allows
discussion of automatic repair strategies.
– That is, if code containing a fault is executed but the system is

able to recover from the fault without it being observable, there
is no failure.

REliable, INtelligent & Scalable Systems
AVAILABILITY

• For example：
– Kemari
– http://www.osrg.net/kemari/

– Kemari: Virtual Machine
Synchronization for Fault Tolerance

– http://wiki.xensource.com/xenwiki/O
pen_Topics_For_Discussion?action=Atta
chFile&do=get&target=Kemari_08.pdf

http://www.osrg.net/kemari/
http://wiki.xensource.com/xenwiki/Open_Topics_For_Discussion?action=AttachFile&do=get&target=Kemari_08.pdf

REliable, INtelligent & Scalable Systems
AVAILABILITY

• Source of stimulus.
– We differentiate between internal and external indications of faults or failure

since the desired system response may be different.

• Stimulus. A fault of one of the following classes occurs.
– omission. A component fails to respond to an input.
– crash. The component repeatedly suffers omission faults.
– timing. A component responds but the response is early or late.
– response. A component responds with an incorrect value.

• Artifact.
– This specifies the resource that is required to be highly available, such as a

processor, communication channel, process, or storage.

• Environment.
– The state of the system when the fault or failure occurs may also affect the

desired system response. For example, if the system has already seen some
faults and is operating in other than normal mode, it may be desirable to shut it
down totally. However, if this is the first fault observed, some degradation of
response time or function may be preferred.

REliable, INtelligent & Scalable Systems
AVAILABILITY

• Response.
– There are a number of possible reactions to a system failure.

These include
• logging the failure

• notifying selected users or other systems

• switching to a degraded mode with either less capacity or less
function

• shutting down external systems

• becoming unavailable during repair.

• Response measure.
– The response measure can specify an availability percentage,

or it can specify a time to repair, times during which the system
must be available, or the duration for which the system must
be available.

REliable, INtelligent & Scalable Systems
AVAILABILITY

REliable, INtelligent & Scalable Systems
Availability Tactics

• A failure occurs when the system no longer delivers a service that is
consistent with its specification; this failure is observable by the
system's users.

• A fault (or combination of faults) has the potential to cause a failure.

• Recovery or repair is an important aspect of availability.

• The tactics we discuss in this section will keep faults from becoming
failures or at least bound the effects of the fault and make repair
possible.

Goal of availability tactics

REliable, INtelligent & Scalable Systems
Availability Tactics

• Many of the tactics we discuss are available within standard execution
environments such as operating systems, application servers, and
database management systems.

• It is still important to understand the tactics used so that the effects of
using a particular one can be considered during design and evaluation.

• All approaches to maintaining availability involve some type of
redundancy, some type of health monitoring to detect a failure, and
some type of recovery when a failure is detected.
– In some cases, the monitoring or recovery is automatic and in others it is

manual.

• We first consider fault detection. We then consider fault recovery and
finally, briefly, fault prevention.

REliable, INtelligent & Scalable Systems
Availability Tactics-fault detection

• Three widely used tactics for recognizing faults are
ping/echo, heartbeat, and exceptions.
– Ping/echo.

• One component issues a ping and expects to receive back an echo,
within a predefined time, from the component under scrutiny.

• This can be used within a group of components mutually responsible
for one task.

• It can also used be used by clients to ensure that a server object and
the communication path to the server are operating within the
expected performance bounds.

• "Ping/echo" fault detectors can be organized in a hierarchy, in which a
lowest-level detector pings the software processes with which it
shares a processor, and the higher-level fault detectors ping lower-
level ones.

• This uses less communications bandwidth than a remote fault
detector that pings all processes.

REliable, INtelligent & Scalable Systems
Availability Tactics-fault detection

– Heartbeat (dead man timer).
• In this case one component emits a heartbeat message periodically

and another component listens for it.
• If the heartbeat fails, the originating component is assumed to have

failed and a fault correction component is notified.
• The heartbeat can also carry data.

– Exceptions.
• One method for recognizing faults is to encounter an exception, which

is raised when one of the fault classes is recognized.
• The exception handler typically executes in the same process that

introduced the exception.

• The ping/echo and heartbeat tactics operate among distinct processes,
and the exception tactic operates within a single process.

• The exception handler will usually perform a semantic transformation
of the fault into a form that can be processed.

REliable, INtelligent & Scalable Systems
Availability Tactics-fault detection

• 假设我们在RUBiS中希望增加对数据库管理系统的错误探测功
能，以探测数据库服务器的连接错误。

– 考虑到数据库服务器本身在系统中的压力会比较大，因此错误探测应
该尽量不影响系统性能；

– 同时，由于数据库服务器连接错误又是一个严重错误，因此我们希望
提高错误探测的实时性。

• 综合考虑，我们选择使用心跳策略来实现这项错误探测功能

– 即在系统中增加一个服务，它周期性地创建到数据库的连接，并且将
连接结果以心跳方式发送给其他部件。

REliable, INtelligent & Scalable Systems
Availability Tactics-fault detection

• 无线电高度表-嵌入式系统

• 自检
– 加电自检

– 周期性自检

– 手动自检

– 受令自检

– LED显示错误代码

REliable, INtelligent & Scalable Systems
Availability Tactics-fault recovery

• Fault recovery consists of preparing for recovery and making the
system repair. Some preparation and repair tactics follow.

• Active redundancy (hot restart).
– All redundant components respond to events in parallel. Consequently,

they are all in the same state.
– The response from only one component is used (usually the first to

respond), and the rest are discarded.
– When a fault occurs, the downtime of systems using this tactic is usually

milliseconds since the backup is current and the only time to recover is
the switching time.

– Active redundancy is often used in a client/server configuration, such as
database management systems, where quick responses are necessary
even when a fault occurs. In a highly available distributed system, the
redundancy may be in the communication paths. For example, it may be
desirable to use a LAN with a number of parallel paths and place each
redundant component in a separate path. In this case, a single bridge or
path failure will not make all of the system's components unavailable.

REliable, INtelligent & Scalable Systems
Availability Tactics-fault recovery

• Passive redundancy
(warm restart/dual redundancy/triple redundancy).
– One component (the primary) responds to events and informs the other

components (the standbys) of state updates they must make. When a fault
occurs, the system must first ensure that the backup state is sufficiently
fresh before resuming services.

– This approach is also used in control systems, often when the inputs come
over communication channels or from sensors and have to be switched
from the primary to the backup on failure.

– Some database systems force a switch with storage of every new data item.
The new data item is stored in a shadow page and the old page becomes a
backup for recovery. In this case, the downtime can usually be limited to
seconds.

– Synchronization is the responsibility of the primary component, which
may use atomic broadcasts to the secondaries to guarantee
synchronization.

REliable, INtelligent & Scalable Systems
Availability Tactics-fault recovery

• Spare.
– A standby spare computing platform is configured to replace many

different failed components.

– It must be rebooted to the appropriate software configuration and
have its state initialized when a failure occurs.

– Making a checkpoint of the system state to a persistent device
periodically and logging all state changes to a persistent device
allows for the spare to be set to the appropriate state.

– This is often used as the standby client workstation, where the
user can move when a failure occurs.

– The downtime for this tactic is usually minutes.

REliable, INtelligent & Scalable Systems
Availability Tactics-fault recovery

• 假设我们在RUBiS中希望增加对数据库的备份，以便在主
服务器产生错误之后，能够切换到备份服务器上。
– 考虑到RUBiS并非关键系统，因此对其可用性要求不是很高，我

们允许适量的用户会话状态丢失；

– 同时，我们要求一旦用户出价成功，那么该数据一定要妥善保存，
即持久化的数据不能丢失。

• 综合考虑，我们使用暖备份机制对数据库服务器进行备份。

REliable, INtelligent & Scalable Systems
Availability Tactics-fault recovery

• 无线电高度表-嵌入式系统

• 冗余
– 存储单元冗余

– 程序代码冗余

– 通信接口冗余

REliable, INtelligent & Scalable Systems
Availability Tactics-fault recovery

• GFS

– 每个文件分块可以有若干个备份

REliable, INtelligent & Scalable Systems
Availability Tactics-fault repair

• There are tactics for repair that rely on component reintroduction.
When a redundant component fails, it may be reintroduced after it has
been corrected..

• Shadow operation.
– A previously failed component may be run in "shadow mode" for a short

time to make sure that it mimics the behavior of the working components
before restoring it to service.

• Checkpoint/rollback.
– A checkpoint is a recording of a consistent state created either

periodically or in response to specific events.
– Sometimes a system fails in an unusual manner, with a detectably

inconsistent state. In this case, the system should be restored using a
previous checkpoint of a consistent state and a log of the transactions that
occurred since the snapshot was taken.

REliable, INtelligent & Scalable Systems
Availability Tactics-fault repair

• 对于RUBiS系统，考虑到系统性能，我们采用周期性记录
系统检查点的方式。
– 对于替换下来的出错的数据库服务器，我们将使用最近的检查点

对其进行修复，然后使用系统日志将此检查点之后产生的持久性
操作同步到待修复的服务器中。

– 在执行这些操作之后，被修复的数据库服务器就可以再次引入系
统中了。

REliable, INtelligent & Scalable Systems
Availability Tactics-fault repair

• 无线电高度表-嵌入式系统

• 系统修复
– 看门狗

– 软中断

– 部件热插拔

REliable, INtelligent & Scalable Systems
Availability Tactics-fault prevention

• The following are some fault prevention tactics.
• Removal from service.

– This tactic removes a component of the system from operation to undergo some
activities to prevent anticipated failures.

– One example is rebooting a component to prevent memory leaks from causing a
failure.

– If this removal from service is automatic, an architectural strategy can be
designed to support it. If it is manual, the system must be designed to support it.

• Transactions.

– A transaction is the bundling of several sequential steps such that the entire
bundle can be undone at once.

– Transactions are used to prevent any data from being affected if one step in a
process fails and also to prevent collisions among several simultaneous threads
accessing the same data.

• Process monitor.

– Once a fault in a process has been detected, a monitoring process can delete the
nonperforming process and create a new instance of it, initialized to some
appropriate state as in the spare tactic.

REliable, INtelligent & Scalable Systems
Availability Tactics-fault prevention

• 在RUBiS中，当出于业务考虑：
– 我们将某个region从regions表里面删除时，由于users表引用了

regions表，因此，我们希望在删除这个region时，将与其关联
的所有users表的region域置为缺省值，例如null。

– 显然，删除region记录和置空users表的region域两个操作应该捆
绑执行，因此，我们将这两个动作定义为一个事务，保证其要
么都执行，要么都不执行。

REliable, INtelligent & Scalable Systems
Availability Tactics-Summary

REliable, INtelligent & Scalable Systems
Reference

• Software.Architecture.In.Practice.2nd.Edition

35

Thank You!

