Architecture of Enterprise Applications 20

Searching

Haopeng Chen

REliable, INtelligent and Scalable Systems Group (REINS)
Shanghai Jiao Tong University
Shanghai, China
http://reins.se.sjtu.edu.cn/~chenhp

e-mail: chen-hp@sjtu.edu.cn

RE e

REliable, INtelligent & Scalable Systems

* Searching

— Apache Lucene

— Apache Solr

REliable, INtelligent & Scalable Systems

* Lucene is a high performance, scalable Information Retrieval
(IR) library.
— It lets youadd indexing and searching capabilities to your applications.
— Lucene is a mature, free, open-source projectimplemented in Java.

— it's amember of the popular Apache Jakarta family of projects, licensed
under the liberal Apache Software License.

* Lucene provides a simple yet powerful core API
— thatrequires minimal understanding of full-text indexing and searching.

REliable, INtelligent & Scalable Systems

Application

Lucene

Indexin
g REliable, INtelligent & Scalable Systems

MS Word
HTML PDF doo

Figure 2.1
Indexing with Lucene breaks
down into three main
operations: converting data
to text, analyzing it, and
saving it to the index.

indexing REiT™

REliable, INtelligent & Scalable Systems

* Atthe heart of all search engines is the concept of indexing:

— processing the original datainto a highly efficient cross-reference lookup
in order to facilitate rapid searching.

* Suppose you needed to search a large number of files, and you
wanted to be able to find files that contained a certain word or
a phrase

— A naive approach would be to sequentially scan each file for the given
word or phrase.

— This approach has a number of flaws, the most obvious of which is that it
doesn’t scale to larger file sets or cases where files are very large.

indexing REiTe

REliable, INtelligent & Scalable Systems

* This is where indexing comes in:

— To search large amounts of text quickly, you must firstindex that text
and convertit into a format that will let you search itrapidly, eliminating
the slow sequential scanning process.

— This conversion process is called indexing, and its output is called an
index.

— You can think of an index as a data structure thatallows fastrandom
access to words stored inside it.

Inverting index REiTe

REliable, INtelligent & Scalable Systems

.fnm
Field Name | Indexed? | Vectored?
subject v v
ceatents v
medified v tlis
lpubmontr. v Field Value doc .’ﬂ
title v t | v A | Hlll'l
category v { Bob Al
isbn v
category leducationipedagogy
path v 9 0
Ihealth/alternative/chinese
author v
orl contents action

wlol—=|—=|o ===]—-]|—

searching REime

REliable, INtelligent & Scalable Systems

» Searchingis the process of looking up words in an index to find
documents where they appear.

* The quality of a search is typically described using precision
and recall metrics.

— Recall measures how well the search system finds relevant documents,
whereas precision measures how well the system filters out the
irrelevant documents.

A number of other factors
— speed and the ability to quickly search large quantities of text.

— Support for single and multi term queries, phrase queries, wildcards,
result ranking, and sorting are also important, as is a friendly syntax for
entering those queries.

A sample application REIT

REliable, INtelligent & Scalable Systems

* Suppose you need to index and search files stored in a directory
tree, not just in a single directory

* These example applications will familiarize you with Lucene’s
API, its ease of use, and its power.

* The code listings are complete, ready-to-use command-line
programs.

Creating an Index REiT™

REliable, INtelligent & Scalable Systems

/**
* This code was originally written for
* Erik's Lucene intro java.net article
*/

public class Indexer {

public static void main(String[] args) throws Exception {
if (args.length = 2) {
throw new Exception("Usage: java " + Indexer.class.getName()
+" <index dir> <data dir>");

}

File indexDir = new File(args[0]); < Create Lucene index in this directory
File dataDir = new File(args[1]); <

Index files in this directory

long start = new Date().getTime();
int numIndexed = index(indexDir, dataDir);
long end =new Date().getTime();

System.out.println("Indexing " + numIndexed + " files took " + (end - start) + " milliseconds");

Creating an Index RE e

REliable, INtelligent & Scalable Systems

// open an index and start file directory traversal
public static intindex(File indexDir, File dataDir) throws IOException {
if ({dataDir.exists() || /dataDir.isDirectory()) {
throw new IOException(dataDir
+ " does not exist or is not a directory");

}

IndexWriter writer = new IndexWriter(indexDir,
new StandardAnalyzer(), true); < Create Lucene index
writer.setUseCompoundFile(false);

indexDirectory(writer, dataDir);

int numIndexed = writer.docCount();
writer.optimize();

writer.close(); < Close index
return numlndexed;

Creating an Index REiT™

REliable, INtelligent & Scalable Systems

// recursive method that calls itself when it finds a directory
private static void indexDirectory(IndexWriter writer, File dir)
throws IOException {

File[] files = dir.listFiles();

for (inti = 0; i < files.length; i++) {
File f = files]i];
if (f.isDirectory()) { < recurse
indexDirectory(writer; f);
} else if (f.getName().endsWith(".txt")) { < Index .txt files only
indexFile(writer, f);

}
}

}

Creating an Index REiT™

REliable, INtelligent & Scalable Systems

// method to actually index a file using Lucene
private static void indexFile(IndexWriter writer, File f)
throws IOException {

if (fisHidden() || 'f.exists() || !f.canRead()) {
return;

}
System.out.println("Indexing " + f.getCanonicalPath());

Document doc = new Document();
doc.add(Field.Text("contents”, new FileReader(f))); < Index file content

doc.add(Field.Keyword("filename", f.getCanonicalPath())); <— Index file name
writeraddDocument(doc); <— Add document to Lucene index

}
}

Running Indexer REIT™

REliable, INtelligent & Scalable Systems

% java lia.meetlucene.Indexer build/index/lucene

Indexing /lucene/build/test/TestDoc/test.txt

Indexing /lucene/build/test/TestDoc/test2.txt

Indexing /lucene/BUILD.txt

Indexing /lucene/CHANGES.txt

Indexing /lucene/LICENSE.txt

Indexing /lucene/README.txt

Indexing /lucene/src/jsp/README.txt

Indexing /lucene/src/test/org/apache/lucene/analysis/ru/stemsUnicode.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/test1251.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/testKOI8.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/testUnicode.txt
Indexing /lucene/src/test/org/apache/lucene/analysis/ru/wordsUnicode.txt
Indexing /lucene/todo.txt

Indexing 13 files took 2205 milliseconds

Searching an index REiTe

REliable, INtelligent & Scalable Systems

/**
* This code was originally written for
* Erik's Lucene intro java.net article
*/

public class Searcher {

public static void main(String[] args) throws Exception {
if (args.length = 2) {
throw new Exception("Usage: java " + Searcher.class.getName()
+ " <index dir> <query>");
}

File indexDir = new File(args[0]); < Index directory created by Indexer
String q = args[1]; <

Query string

if (lindexDir.exists() || lindexDir.isDirectory()) {
throw new Exception(indexDir +
" does not exist or is not a directory.");

}

search(indexDir, q);

}

Searching an index REIT

REliable, INtelligent & Scalable Systems

public static void search(File indexDir, String q)
throws Exception {
Directory fsDir = FSDirectory.getDirectory(indexDir; false);
IndexSearcher is = new IndexSearcher(fsDir); < Open Index

Query query = QueryParser.parse(q, "contents”, new StandardAnalyzer());

long start = new Date().getTime(); < Parse query
Hits hits = is.search(query); ¢ Search Index

long end = new Date().getTime();

System.err.println("Found " + hits.length() + " document(s) (in" + (end - start) +

" milliseconds) that matched query " + q +"":");
< Werite search stats

for (inti=0;i < hitslength(); i++) { < Retrieve matching document
Document doc = hits.doc(i);
System.out.println(doc.get("filename")); < Display filename
}
}
}

Running Searcher REiT™

REliable, INtelligent & Scalable Systems

%java lia.meetlucene.Searcher build/index 'lucene’

Found 6 document(s) (in 66 milliseconds) that matched query 'lucene’:
/lucene/README.txt

/lucene/src/jsp/README.txt

/lucene/BUILD.txt

/lucene/todo.txt

/lucene/LICENSE.txt

/lucene /CHANGES.txt

Core indexing classes RE e

REliable, INtelligent & Scalable Systems

e IndexWriter

— This class creates a new index and adds documents to an existing index.

* Directory
— The Directory class represents the location of a Lucene index.

e Analyzer

— The Analyzer, specified in the IndexWriter constructor; is in charge of extracting
tokens out of textto be indexed and eliminating the rest.

* Document

— A Documentrepresents a collection of fields.

Field

— Each field corresponds to a piece of data that is either queried against or
retrieved from the index during search.

Core searching classes RL e

REliable, INtelligent & Scalable Systems

 IndexSearcher

— IndexSearcheris to searching what IndexWriteris to indexing

* Term
— A Term is the basic unit for searching.
* Query

— Query is the common, abstract parent class. It contains several utility methods

* TermQuery

— TermQuery is the mostbasic type of query supported by Lucene, and it’s one of
the primitive query types.

 Hits

— The Hits class is a simple container of pointers to ranked search results

Adding documents to an index REIT

REliable, INtelligent & Scalable Systems

public abstract class BaselndexingTestCase extends TestCase {
protected String[] keywords = {"1", "2"};
protected String[] unindexed = {"Netherlands”, "Italy"};
protected String[] unstored = {"Amsterdam has lots of bridges”,
"Venice has lots of canals"};

protected String[] text = {"Amsterdam”, "Venice"};
protected Directory dir;

protected void setUp() throws [OException {
String indexDir =
System.getProperty("java.io.tmpdir”, "tmp") +
System.getProperty("file.separator”) + "index-dir";
dir = FSDirectory.getDirectory(indexDir, true);

addDocuments(dir);

}

Adding documents to an index REIT

REliable, INtelligent & Scalable Systems

protected void addDocuments(Directory dir) throws IOException {
IndexWriter writer = new IndexWriter(dir, getAnalyzer(), true);
writer.setUseCompoundFile(isCompound());
for (inti = 0;i < keywords.length; i++) {
Document doc = new Document();
doc.add(Field.Keyword("id", keywords[i]));
doc.add(Field.UnIndexed("country”, unindexed[i]));
doc.add(Field.UnStored("contents", unstored[i]));
doc.add(Field.Text("city", text[i]));
writeraddDocument(doc);
}
writer.optimize();
writer.close();
}
protected Analyzer getAnalyzer() { return new SimpleAnalyzer();}
protected boolean isCompound() { return true; }

}

Fields RE e

REliable, INtelligent & Scalable Systems

« Allfields consist of a name and value pair.

Keyword—Isn’t analyzed, but is indexed and stored in the index
verbatim.

UnIndexed—Is neither analyzed nor indexed, but its value is stored in
the index as is.

UnStored—The opposite of Unlndexed. This field type is analyzed and
indexed but isn't stored in the index.

Text—Is analyzed, and is indexed. This implies that fields of this type can
be searched against, but be cautious about the field size.

Adding documents to an index RET™

REliable, INtelligent & Scalable Systems

* Heterogeneous Documents

— One handy feature of Lucene is thatit allows Documents with different
sets of Fields to coexistin the same index.

— This means you can use a single index to hold Documents that represent
different entities.

— For instance, you could have Documents that represent retail products
with Fields such as name and price, and Documents thatrepresent
people with Fields such as name, age, and gender.

Adding documents to an index RET™

REliable, INtelligent & Scalable Systems

 Appendable Fields

* Suppose you have an application that generates an array of synonyms for a
givenword, and you want to use Lucene to index the base word plus all its
synonyms.

e like this:
String baseWord = "fast";
String synonyms|[] = String {"quick", "rapid"”, "speedy"};
Document doc = new Document();
doc.add(Field.Text("word", baseWord));
for (inti = 0; i < synonyms.length;i++) {

doc.add(Field.Text("word", synonyms(i]));

}

* Internally, Lucene appends all the words together and index them in a single
Field called word, allowing you to use any of the given words when
searching.

Removing Documents from an index AL 1T

REliable, INtelligent & Scalable Systems

public class DocumentDeleteTest extends BaseIndexingTestCase {
public void testDeleteBeforeIndexMerge() throws IOException {
IndexReaderreader = IndexReaderopen(dir);
assertEquals(2, readermaxDoc());
assertEquals(2, readernumDocs());
reader.delete(1);
assertTrue(readerisDeleted(1));
assertTrue(readerhasDeletions());
assertEquals(2, readermaxDoc());
assertEquals(1, readernumDocs());
reader.close();
reader = IndexReaderopen(dir);
assertEquals(2, readermaxDoc());
assertEquals(1, readernumDocs());
reader.close();

Removing Documents from an index AL 1T

REliable, INtelligent & Scalable Systems

public void testDeleteAfterIndexMerge() throws IOException {
IndexReaderreader = IndexReaderopen(dir);
assertEquals(2, readermaxDoc());
assertEquals(2, readernumDocs());
readerdelete(1);
reader.close();
IndexWriter writer = new IndexWriter(dir, getAnalyzer(), false);
writeroptimize();
writer.close();
reader = IndexReaderopen(dir);
assertFalse(readerisDeleted(1));
assertFalse(readerhasDeletions());
assertEquals(1, readermaxDoc());
assertEquals(1, readernumDocs());
reader.close();

Undeleting Documents REime

REliable, INtelligent & Scalable Systems

* Because Documentdeletionis deferred until the closing of the
IndexReader instance,

— Lucene allows an application to change its mind and undelete
Documents that have been marked as deleted.

* A callto IndexReader’s undeleteAll()method undeletes all
deleted Documents

— by removingall .del files from the index directory.

* Subsequently closing the IndexReader instance therefore leaves
all Documents in the index.

— Documents can be undeleted only if the call to undeleteAll(Jwas done
using the same instance of IndexReader that was used to delete the
Documents in the first place.

Updating Documents in an index RE e

REliable, INtelligent & Scalable Systems

* “Howdo I updatea documentin an index?”
— is afrequently asked question on the Lucene user mailing list.
* Lucene doesn't offer an update(Document)method;
— instead, a Documentmust first be deleted from an index and then re-added to it
IndexReaderreader = IndexReader.open(dir);
reader.delete(new Term("city", "Amsterdam"));
reader.close();

IndexWriter writer = new IndexWriter(dir, getAnalyzer(), false);
Document doc = new Document();

doc.add(Field.Keyword("id", "1"));
doc.add(Field.UnIndexed("country”, "Netherlands"));
doc.add(Field.UnStored("contents”, "Amsterdam has lots of bridges"));
doc.add(Field.Text("city", "Haag"));

writeraddDocument(doc);

writer.optimize();

writer.close();

Boosting Documents and Fields RE e

REliable, INtelligent & Scalable Systems

* Not all Documents and Fields are created equal

Documentboostingis a feature that makes such a requirement simple to
implement.

By default, all Documents have no boost—or; rather; they all have the
same boost factor of 1.0.

By changing a Document’s boost factor, you can instruct Lucene to
considerit more or less important with respect to other Documents in
the index.

The API for doing this consists of a single method, setBoost(float)

Boosting Documents and Fields RL e

REliable, INtelligent & Scalable Systems

publicstatic final String COMPANY_DOMAIN = "example.com";
publicstatic final String BAD_DOMAIN = "yucky-domain.com";

Document doc = new Document();
String senderEmail = getSenderEmail();
String senderName = getSenderName();
String subject = getSubject();

String body = getBody();

doc.add(Field.Keyword("senderEmail”, senderEmail));
doc.add(Field.Text("senderName", senderName));
doc.add(Field.Text("subject", subject));

doc.add(Field.UnStored("body", body));

if (getSenderDomain().endsWithlgnoreCase(COMPANY_DOMAIN)){
doc.setBoost(1.5);

}
else if (getSenderDomain().endsWithIgnoreCase(BAD_DOMAIN)){

doc.setBoost(0.1);

}

writer.addDocument(doc);

Tuning indexing performance RE e

REliable, INtelligent & Scalable Systems

Used by other apps

Figure 2.2
An in-memory
Document buffer helps
improve Lucene’s
indexing performance.

ParaIIellzmg mdexmg by working RE itre

REliable, INtelligent & Scalable Systems

Figure 2.3 A multithreaded application that uses multiple RAMDirectory
instances for parallel indexing.

Concurrency. REiTe

REliable, INtelligent & Scalable Systems

shared
IndexWriter

Figure 2.7
Ingex A single IndexWriter or IndexReader
can be shared by multiple threads.

Searching for a specific term REime

REliable, INtelligent & Scalable Systems

* Atermis avalue that is paired with its containing field.

IndexSearcher searcher = new IndexSearcher(directory);

Term t = new Term("subject”, "ant");
Query query = new TermQuery(t);
Hits hits = searcher.search(query);

t = new Term("subject”, "junit");
hits = searcher.search(new TermQuery(t));

searcher.close();

Parsing a user-entered query. RE itre

. J REliable, INtelligent & Scalable Systems
)

IndexSearcher searcher = new IndexSearcher(directory);

Query query = QueryParser.parse("+JUNIT +ANT -MOCK", "contents”,
new SimpleAnalyzer());

Hits hits = searcher.search(query);

Documentd = hits.doc(0);

query = QueryParser.parse("mock OR junit”, "contents”,
new SimpleAnalyzer());

hits = searcher.search(query);

Understanding Lucene scoring REIT

REliable, INtelligent & Scalable Systems

* The scoreis computed for each document (d) matching a
specific.
— This score is the raw score.
— Scoresreturned from Hits aren’t necessarily the raw score, however.

— If the top-scoring document scores greater than 1.0, all scores are
normalized from that score, such that all scores from Hits are
guaranteed to be 1.0 or less.

Understanding Lucene scoring RET™

REliable, INtelligent & Scalable Systems

2 tf (t ind) idf (t)-boost (t. field in d) lengthNorm (t. field in d)

tin g

Table 3.5 Factors in the scoring formula

Factor Description
tf(t in 4) Term frequency factor for the term (t) in the document (d).
idf (t) Inverse document frequency of the term.
boost (t.field in 4) Field boost, as set during indexing.

lengthNorm(t.field in d) | Normalization value of a field, given the number of terms within the
field. This value is computed during indexing and stored in the index.

coord(qg, d) Coordination factor, based on the number of query terms the
document contains.
queryNorm(q) Normalization value for a query, given the sum of the squared weights

of each of the query terms.

Apache Solr REIT

REliable, INtelligent & Scalable Systems

* Apache Solr is an enterprise search server based on Lucene.

* Some of Solr's most notable features beyond Lucene are:

A server that communicates over HTTP via XML and JSON data formats.

Configuration files, most notably for the index's schema, which defines the
fields and configuration of their text analysis.

Several caches for faster search responses.
A web-based administrative interface including:
* Runtime search and cache performance statistics.
* A schema browser with index statistics on each field.
« Adiagnostic tool for debugging text analysis.
Faceting of search results.

A query parser called dismaxthat is more usable for parsing end user
queries than Lucene's native query parser.

Geospatial search for filtering and sorting by distance.
Distributed-search supportand index replication for scaling Solr.

Solritas: A sample generic web search Ul demonstrating many of Solr's
search features.

Apache Solr REIT

REliable, INtelligent & Scalable Systems

Replication
Master Solr

Sharding
A collection of Shards

\hdenes Replcated
Replicated Shards

;:: Slave Instances
Master Shares
Agge@te Query
Imound Qumes Resuls

Individual
Shards
T T . Replicated
Inbound Quaries /
T @
B E b

=
g Slave Slave
Pool 1 Pool 2
Inbound Queries send to pools of slave shards

REliable, INtelligent & Scalable Systems

* Requirement

— Try Lucene or Solr if you can.

— Use Lucene or Solr to do the full-text searchingin all the blogs to find the
desired topics.

References REiTre

REliable, INtelligent & Scalable Systems

Apache Lucene
— http://lucene.apache.org/

* Lucene in Action
— By Otis Gospodnetic & Erik Hatcher
— MANNING Publishing

Solr: Ultra-fast Lucene-based Search Server
— http://lucene.apache.org/solr/

* Apache Solr 3 Enterprise Search Server
— By David Smiley & Eric Pugh
— PACKT Publishing

Thank You!

