Spark

In-Memory Cluster Computing for
lterative and Interactive Applications

Matei Zaharia, Mosharaf Chowdhury, Justin Ma,
Michael Franklin, Scott Shenker, lon Stoica

lab

UC Berkeley

Background

Commodity clusters have become an important

computing platform for a variety of applications
» In industry: search, machine translation, ad targeting, ...
» In research: bioinformatics, NLP, climate simulation, ...

High-level cluster programming models like
MapReduce power many of these apps

Theme of this work: provide similarly powerful
abstractions for a broader class of applications

Motivation

Current popular programming models for
clusters transform data flowing from stable

storage to stable storage

E.g., MapReduce:

- Output

Motivation

Current popular programming models for
clusters transform data flowing from stable
storage to stable storage

E.g., MapReduce:

|

I

-

Benefits of data flow: runtime can decide

where to run tasks and can automatically

recover from failures

~

—

I

Motivation

Acyclic data flow is a powerful abstraction, but
is not efficient for applications that repeatedly
reuse a working set of data:

» Iterative algorithms (many in machine learning)
» Interactive data miningtools (R, Excel, Python)

Spark makes working sets a first-class concept
to efficiently support these apps

Spark Goal

Provide distributed memory abstractions for
clusters to support apps with working sets

Retain the attractive properties of MapReduce:
» Fault tolerance (for crashes & stragglers)
» Data locality
» Scalability

()

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

Generality of RDDs

We conjecture that Spark’s combination of data
flow with RDDs unifies many proposed cluster

programming models
» General data flow models: MapReduce, Dryad, SQL

» Specialized models for stateful apps: Pregel (BSP),
HaLoop (iterative MR), Continuous Bulk Processing

Instead of specialized APIs for one type of app,
give user first-class control of distrib. datasets

Outline

[Spark programming model

Example applications
Implementation
Demo

Future work

Programming Model

Resilient distributed datasets (RDDs)
» Immutable collections partitioned across cluster that
can be rebuilt if a partition is lost
» Created by transforming data in stable storage using
data flow operators (map, filter, group-by, ...)
» Can be cached across parallel operations

Parallel operations on RDDs
» Reduce, collect, count, save, ...

Restricted shared variables
» Accumulators, broadcast variables

Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(*hdfs://...”") |
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedmsgs. filter(_.contains(“foo”)) .count
cachedmsgs.filter(_.contains(“bar”)) .count

Result: full-text search of Wikipedia
in <1 sec (vs 20 sec for on-disk data)

RDDs in More Detall

An RDD is an immutable, partitioned, logical
collection of records

» Need not be materialized, but rather contains information
to rebuild a dataset from stable storage

Partitioning can be based on a key in each record
(using hash or range partitioning)

Built using bulk transformations on other RDDs

Can be cached for future reuse

RDD Operations

Transformations Parallel operations
(define a new RDD) (return a result to driver)

map reduce
filter collect
sample count
union save
groupByKey lookupKey
reduceByKey

join

cache

RDD Fault Tolerance

RDDs maintain lineage information that can be
used to reconstruct lost partitions

E)(:cachedMsgs = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))

.cache()

HdfsRDD FilteredRDD MappedRDD
[path: hdfs://... %E‘unc: contains(...) func: split(...) [CachedRDD }

Benefits of RDD Model

Consistency is easy due to immutability

Inexpensive fault tolerance (log lineage rather
than replicating/checkpointing data)

Locality-aware scheduling of tasks on partitions

Despite being restricted, model seems
applicable to a broad variety of applications

RDDs vs Distributed Shared Memory

Concern RDDs Distr. Shared Mem.
Reads Fine-grained Fine-grained
Writes Bulk transformations | Fine-grained

Consistency

Trivial (immutable)

Up to app / runtime

Fault recovery

Fine-grained and low-
overhead using lineage

Requires checkpoints
and program rollback

Straggler
mitigation

Possible using
speculative execution

Difficult

Work placement

Automatic based on
data locality

Up to app (but runtime
aims for transparency)

Related Work

DryadLINQ

» Language-integrated APl with SQL-like operations on lazy datasets
» Cannot have a dataset persist across queries

Relational databases
» Lineage/provenance, logical logging, materialized views

Piccolo
» Parallel programs with shared distributed tables; similar to
distributed shared memory

lterative MapReduce (Twister and HalLoop)
» Cannot define multiple distributed datasets, run different
map/reduce pairs on them, or query data interactively

RAMCloud

» Allows random read/write to all cells, requiring logging much like
distributed shared memory systems

Outline

Spark programming model

[Example applications

Implementation
Demo

Future work

Example: Logistic Regression

Goal: find best line separating two sets of points

random initial line

targs

Logistic Regression Code

val data = spark.textFile(...).map(readpoint).cache()
var w = Vector.random(D)

for (i <- 1 to ITERATIONS) {
val gradient = data.map(p =>
1/ @A + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(C_ + _)
w -= gradient

}

printin("Final w: " + w)

Logistic Regression Performance

4500
4000

B 3500
g 3000
= 2500
2000
1500
1000
500
0

Running

5 10 20
Number of Iterations

127 s [iteration

/

Hadoop
& Spark

\

first iteration 174 s
further iterations 6 s
30

Example: MapReduce

MapReduce data flow can be expressed using
RDD transformations

res = data.flatMap(rec => myMapFunc(rec))

.groupByKey ()
.map((key, vals) => myReduceFunc(key, vals))

Or with combiners:

res = data.flatMap(rec => myMapFunc(rec))

.reduceByKey (myCombiner)
.map((key, val) => myReduceFunc(key, val))

Word Count in Spark

val 1lines = spark.textFile(“hdfs://...”)

val counts = lines.flatMap(_.split(“\\s”))
.reduceByKey(_ + _)

counts.save(“hdfs://...”)

Example: Pregel

Graph processing framework from Google that
implements Bulk Synchronous Parallel model

Vertices in the graph have state

At each superstep, each node can update its
state and send messages to nodes in future step

Good fit for PageRank, shortest paths, ...

Pregel Data Flow

[Inputgraph] [Vertex statelJ [Messages 1 J

Superstep 1

[Vertex state 2 J [Messages 2 J

1
1
1
1
~~~~~~ l /w
Superstep 2




PageRank in Pregel

[ Input graph ] {Vertex rank51] {Contributionn]

uperstep 1 (add contripbs

{Vertex ranks 2] {Contributions 2]

uperstep 2 (add contribs




Pregel in Spark

Separate RDDs for immutable graph state and
for vertex states and messages at each iteration

Use groupByKey to perform each step
Cache the resulting vertex and message RDDs

Optimization: co-partition input graph and
vertex state RDDs to reduce communication



Other Spark Applications

Twitter spam classification (Justin Ma)

EM alg. for traffic prediction (Mobile Millennium)
K-means clustering

Alternating Least Squares matrix factorization
In-memory OLAP aggregation on Hive data

SQL on Spark (future work)



Outline

Spark programming model

Example applications

Implementation

Demo

Future work



Overview

Spark runs on the Mesos
cluster manager [NSDI 11],

letting it share resources

with Hadoop & other apps
Can read from any Hadoop

Input source (e.g. HDFS)

~6000 lines of Scala code thanks to building on Mesos



Language Integration

Scala closures are Serializable Java objects
» Serialize on driver, load & run on workers

Not quite enough
» Nested closures may reference entire outer scope
» May pull in non-Serializable variables not used inside
» Solution: bytecode analysis + reflection

Shared variables implemented using custom
serialized form (e.qg. broadcast variable contains
pointer to BitTorrent tracker)



Interactive Spark

Modified Scala interpreter to allow Spark to be
used interactively from the command line

Required two changes:
» Modified wrapper code generation so that each "line’

typed has references to objects for its dependencies
» Place generated classes in distributed filesystem

4

Enables in-memory exploration of big data



Outline

Spark programming model
Example applications

Implementation

Demo

Future work



Outline

Spark programming model
Example applications
Implementation

Demo

Future work




Future Work

Further extend RDD capabilities
» Control over storage layout (e.qg. column-oriented)
» Additional caching options (e.g. on disk, replicated)

Leverage lineage for debugging
» Replay any task, rebuild any intermediate RDD

Adaptive checkpointing of RDDs

Higher-level analytics tools built on top of Spark



Conclusion

By making distributed datasets a first-class
orimitive, Spark provides a simple, efficient
orogramming model for stateful data analytics

RDDs provide:

» Lineage info for fault recovery and debugging
» Adjustable in-memory caching

» Locality-aware parallel operations

We plan to make Spark the basis of a suite of
batch and interactive data analysis tools



RDD Internal API

Set of partitions

Preferred locations for each partition
Optional partitioning scheme (hash or range)
Storage strategy (lazy or cached)

Parent RDDs (forming a lineage DAG)



