
A Queueing-Theory-Based Fault Detection Mechanism for SOA-Based
Applications

HAO-PENG CHEN
School of Software, Shanghai Jiao Tong

University, Shanghai 200240, China
E-mail: chen-hp@sjtu.edu.cn

CHENG ZHANG
School of Software, Shanghai Jiao Tong

University, Shanghai 200240, China
E-mail: darkinparadise@sjtu.edu.cn

Abstract

SOA has become more and more popular, but fault
tolerance is not supported in most SOA-based
applications yet. Although fault tolerance is a grand
challenge for enterprise computing, we can partially
resolve this problem by focusing on its some aspect.
This paper focuses on fault detection and puts forward
a queueing-theory-based fault detection mechanism to
detect the services that fail to satisfy performance
requirements. This paper also gives a reference service
model and reference architecture of fault-tolerance
control center of Enterprise Services Bus for SOA-
based applications.

1. Introduction

Service-Oriented Architecture (SOA) is an
emerging approach of software system development
for constructing complex distributed applications. In
this approach, application developers identify desired
services in service repository which can realize
different parts of the functionality of an application and
compose the available services into the target
application through an appropriate application
composition process. Therefore, instead of designing
and coding, SOA-based applications are built through
service discovery and composing.

One of the important characteristics of SOA-based
applications that are different from traditional software
is dynamic discovery and composition [1]. It means
that SOA-based applications have the ability to
discover and compose services into themselves at
runtime, which is necessary for the applications to
locate the alternative services to replace existing ones
that fail to satisfy the functional or performance
requirements during their execution. With dynamic
discovery and composition, SOA-based applications
have the capability of fault-tolerance.

Dynamic discovery and composition requires four
capabilities: (a) to identify existing services that fail to
satisfy the functional or performance requirements for
SOA-based applications; (b) to generate queries to
locate alternative services that could replace existing
ones; (c) to efficiently execute these queries at runtime;
(d) to dynamically replace existing services during
application execution [2]. Among these capabilities,
fault detection, the capability to identify the failed
existing services, takes precedence over other three
capabilities because successful fault detection is the
guarantee for them to be employed properly. We can
conclude, therefore, fault detection is the most
important capability for SOA-based applications.

The research on SOA falls into two major
categories:
1. Service matching, that is, discovering services

that meet the requirements. The requirements are
on either functionality or quality properties.

2. Service discovery efficiency that focuses on
discovering services more efficiently.

In the research of service matching, semantic
matching is a widely adopted approach to identify the
consistency of functional requirement. [3] presents
efficient service discovery and composition algorithms
that exploit both syntactic and semantic service
descriptions of web services. [4] introduces a semantic
matching algorithm that exploits the possibility to
compose multiple services in order to satisfy a service
request. [5] proposes an automatic composition
mechanism by using pre and post-conditions of Web
services. As for the aspect of quality properties,
existing approaches are mainly based on extension of
service description. [6] presents an agent-based
framework for web services composition, introduces a
web services QoS model, and gives an algorithm of
selecting services from the perspective of composition.
[7] presents a generalized design and implementation
of a QoS enabled Web Service discovery mechanism.
The mechanism groups web services into the

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

predefined categories in UDDI according to the QoS
description of services, and search for the desired
services in the categories with key words. It brings the
benefit of QoS characteristics without affecting the
existing UDDI search facilities.

In the research of service discovery efficiency,
some effort is put on the design of service registry
center, for example, [8] presents a reliable, flexible and
scalable distributed web service discovery architecture
that is based on the concept of distributed shared space
and intelligent search among a subset of spaces. Some
research work focuses on the detail of service
invocation, for example, [9] proposes the Short Circuit
Switch (SCS), which is an intelligent Web services
discovery and invocation engine that can be attached to
deployed Web services in order to enable direct
invocation instead of communication via Web services
interface, when two web services happen to reside on
the same runtime system.

These approaches or solutions, however, have not
emphasized the capability of fault tolerance. This fact
shows fault tolerance is an important issue for IT
industry, but it has not completely resolved yet. There
are quite a few of reasons for this situation. For
example, we need an automatic verifier to verify the
services dynamically discovered, but as a grand
challenge, there is no automatic verifier which has
been designed and developed for commercial use.
Despite these reasons, some aspects of fault tolerance
should and could be resolved, such as fault detection.

As we mentioned, the purpose of fault detection is
to identify two kinds of services: the services that fail
to satisfy functional requirements and the services fail
to satisfy performance requirements. We focused on
the latter kind of services, because the failure of the
former kind of services may be caused by semantic
errors which have to be manually identified and
corrected, meanwhile, the failure of the former kind of
services can be automatically detected via appropriate
mechanism.

This paper puts forward a fault detection
mechanism, which is based on the queueing theory, to
detect the services that fail to satisfy performance
requirements. This paper also gives a reference service
model and reference architecture of fault-tolerance
control center of ESB (Enterprise Services Bus).

2. Rationale of this mechanism

The purpose of our mechanism is to detect the
services which have not enough capability to satisfy
the performance requirements specified by application

assemblers. Performance, to put it simply, is how
quickly the system can respond to a given logical
operation from a given individual user. Response time
is a measure of the amount of time the system
consumes while processing a user request, which is
made up of three things: latency, which is the amount
of time spent processing overhead just to get to the
point of carrying out a service; wait time, which is the
time spent waiting for the service, or, once the service
is executing, the time spent waiting for resources; and
service time, which is the time needed to process the
request when no waiting is involved [11].

Since response time is an important measure of
service performance, we can use it to determine
whether the specified service satisfies its performance
requirement or not. A fixed value of response time,
however, is not suitable to do it, because response time
is a typical random variable. Thus, how should we
model the service requests processing? With analysis,
we can find out that the service requests processing has
the following features:

1. The interarrival times between any two
successive service invocation requests are
independent of each other and have a common
distribution.

2. The clients would receive responses if requests
processed by service in time, or receive
exceptions due to the timeout of waiting. They
even could abort the service invocation requests
as their wills

3. The service times needed for every request are
not only dependent on the status of services, but
also identically distributed. Furthermore, they are
independent of interarrival times.

4. The requests can be served in many possible
orders, such as first come first served, last come
first served, shortest processing time first, random
order, round robin, and so on. However, the first
come first served is still the predominant way.

5. There may be a single service instance or a group
of service instances processing the requests. Thus,
there are several possible kinds of service
capacity.

6. Since the cache or buffer of the service hosting
environment is finite, the number of waiting
requests is limited. It means if the waiting room
of a service hosting environment is fully
occupied, then when extra requests arrive this
service, they would be ignored.

The above six feature has shown the model of
service requests processing is a typical queueing model,

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

so we can resort to queueing theory to establish our
fault detection mechanism.

Queueing models have some relevant performance
measures, such as the distribution of the waiting time
and the sojourn time of a request, the distribution of
the amount of work in the system, and the distribution
of the busy period of the service. Note that the sojourn
time is the waiting time plus the service time, which
equals to response time. [12]

Let E(N) denote the mean number of requests in the
service hosting environment, E(T) denote the mean
sojourn time, andλdenote the average number of
requests arriving the service per unit time. Under the
assumption that the capacity of the system is sufficient
to deal with the requests, according to the Little’s law,
when a queue reaches a steady state after a long
running time, the relation between the three values is:

λE(T)E(N) = (1)

In formula (1), if we know any two of the three
elements, we can compute the third one. We take
advantage of this feature. [13]

We set up a monitor, which is triggered once a
request is processed, to record Sk, the sojourn time of
this request. This monitor also records tλ every unit
time, which is the number of new arriving requests
during the unit time right before time t. By the formula
group (2), we use a scanner to scan the service instance
pool every unit time to gain L(t), the number of
requests under processing or waiting at time t, and use
a calculator to compute E(N), E(T), and λ with the data
recorded by the monitor.















=

=

=

∑

∑

∑

=∞→

=∞→

=∞→

t

0x
xt

n

1k
kn

t

0xt

t
1lim

S
n
1lim E(T)

xL
t
1limE(N)

λλ

)(

(2)

Consequently, the values of E(N), E(T)andλin
formula group (2) reflect the real-time status of a
service. Meanwhile, E(T’), the theoretical value of the
mean sojourn time, can be computed by formula (1). It
is obviously that E(T) could not always equal to E(T’).
When the service has not enough capability to deal
with all arrived requests, some requests would be
ignored, and their clients would receive timeout
exception, in contrast, some requests would be aborted
by their clients. Therefore, it is not all requests that
would be served by the service, which means E(T)

would be greater or smaller than E(T’). Thus, we can
specify an acceptable nonnegative error e, and compare
E(T) with E(T’) to check whether the inequation (3) is
true.

eE(T')E(T) ≤− (3)

If E(T) and E(T’)make inequation (3) false, it means
there are too many requests to be refused or aborted in
current unit time. Next, we set up a positive integer n,
which denotes if in successive n unit time, the absolute
values of the differences between E(T) and E(T’) are
greater than e, then we consider that the service can not
satisfy our performance requirement. As a result, we
successfully detect a fault by our criteria.

3. Reference service model

According to the rationale of our fault detection
mechanism, we provide a reference service model, as
shown in Figure 1.

Figure 1. A reference service model

In this reference model, we add a monitor, a scanner,
a data storage, and a calculator into the ordinate service
model.

The clients of a service generate service invocation
requests according to the service public interface,
which contains all methods allowed client to invoke.
These requests are sent to Enterprise Service Bus (ESB)
in form of some kind of messages, such as XML
messages.

When these messages arrive at the service hosting
environment, the monitor intercepts all of them,
records their arrival time into its cache, and updates tλ ,
the number of new arrival requests stored in the data
storage. Subsequently, the monitor delegates the
requests to service instance pool.

The service instances pool interprets the messages
into the method invocations which can be accepted by
the programming language used to implement the
service. It creates new instances or allocates existing

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

instances for the method invocations waiting in a
queue. If a method invocation is accomplished, there is
a response generated and sent back to client.
Meanwhile, the service instances pool reclaims the
invoked service instance.

When a response is be sending back to client, it is
intercepted by the monitor again to read the leaving
time. Subsequently, the monitor calculates Sk , the
sojourn time of the corresponding request, with the
cached arrival time and the leaving time, and stores it
into the data storage. Lastly, the response is delivered
to ESB.

The scanner scans the service instances pool every
unit time to gain L(t), the number of requests under
processing or waiting at time t. L(t) should be the sum
of the length of waiting queue and the number of
service instance, and stored in the data storage.

The calculator accesses the data storage to retrieve
Sk , tλ , and L(t), and uses them to calculate E(N),
E(T)andλby formula group (2) every unit time. Finally,
the calculator sends E(N), E(T)andλonto ESB in order
to allow the control center of ESB to receive them and
subsequently to determine whether the service is failed
to satisfy the performance requirements according to
the real-time configured acceptable error e and
acceptable number of successive failed unit time n.

Since the data stored in data storage is just several
records, and it needs to be accessed frequently, it
should be designed as an in-memory object, such as an
in-memory table.

It is obvious that this reference service model
achieves our aims in the way that has a side-effect on
performance. Since the side-effect is limited, it is
worthy to obtain the capability of fault detection at the
cost of implementing services in this way.

4. Reference architecture of fault-tolerance
control center of ESB

In [10], the authors abstracted the architecture of
fault-tolerance control center of ESB. We extend this
architecture by adding three components into it to
support our fault detection mechanism. The reference
architecture is shown in Figure. 2.

Figure 2. Reference architecture of fault-tolerance control
center of ESB

In this reference architecture, the service k (k =
1,2,……,n) is implemented based on the service model
in section 4, which periodically sends its E(N),
E(T)andλonto ESB.

The Data Collection Service, Dynamic Composition
Manager, and Dynamic Workflow Specification are
put forward by the authors of [10]. Data Collection
Service will keep on monitoring the behaviors of the
participating services and collect data at runtime [10].
In our architecture, the data collected by Data
Collection Service is all E(N), E(T)andλperiodically
sent by all services.

We add a Database to store the collected data,
because the sample spaces for mean response time
calculation and comparison of all services are too big
to store in memory. This database also could be a
lightweight data storage, such as a LDAP storage.

The Decision Maker access the Database to
calculate the difference between the actual mean
response time E(T) and the theoretical mean response
time E(T’), and access the Service Qos Descriptor,
which contains all Qos requirements of services in
system, to retrieve the acceptable error and acceptable
number of successive failed unit time n. If there have
been successive n times that the absolute value of the
difference between E(T) and E(T’)is greater then e, a
warning message will be send to Dynamic Workflow
Specification, which will determine whether the
workflow specification should be modified or not [10].
If the workflow specification is modified, the Dynamic
Composition Manager will re-composite the workflow
at runtime [10].

This architecture is a coarse-grained architecture.
when applying to specific SOA-based applications, it
needs to be refined and customized.

5. Conclusion

In this paper, we put forward a fault detection
mechanism, which is based on the queueing theory, to
detect the services that fail to satisfy performance
requirements. We also give a reference service model
and a reference architecture of fault-tolerance control
center of ESB based on our fault detection mechanism.

Although queueing theory is mature, and we can
prove the correctness of this mechanism, we lack of
experiment data yet, because it is difficult to establish a
simulation application to validate our mechanism. As
we mentioned in section 1, the existing frameworks or
platforms have no capability of fault tolerance, some of

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

them even have no open APIs provided for us to
extend them. With the emergence of open source SOA
platform, we can choose a proper one to extend it to
have the capability of fault detection, and establish a
practical SOA-based application to validate the
correctness of this mechanism in future.

References

[1] W.T. Tsai, Chun Fan, Yinong Chen, R. Paul, and Jen-

Yao Chung, “Architecture classification for SOA-based
applications”, Proc. of the Ninth IEEE International
Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC 2006), April,
2006, pp. 8-15

[2] G. Spanoudakis, A. Zisman, and A. Kozlenkov, “A
service discovery framework for service centric
systems”, Proc. of 2005 IEEE International Conference
on Services Computing (SCC 2005), July 2005, pp. 251
- 259

[3] Seog-Chan Oh, Hyunyoung Kil, Dongwon Lee, and
Soundar R. T. Kumara, “Algorithms for Web Services
Discovery and Composition Based on Syntactic and
Semantic Service Descriptions”, Proceedings of the 8th
IEEE International Conference on E-Commerce
Technology and the 3rd IEEE International Conference
on Enterprise Computing, E-Commerce, and E-
Services (CEC/EEE'06), June 2006, pp. 66 – 66

[4] Lerina Aversano, Gerardo Canfora, Anna Ciampi , “An
algorithm for Web service discovery through their
composition”, Proceedings of the IEEE International
Conference on Web Services (ICWS'04), July 2004,
pp.332 – 339

[5] Lin Lin, I. Budak Arpinar, “Discovering Semantic
Relations between Web Services Using Their Pre and
Post-Conditions”, Proceedings of the 2005 IEEE
International Conference on Services Computing
(SCC'05), July 2005, pp.237 - 238 vol.2

[6] Bin Li, Xiao-yan Tang, Jian Lv, “The Research and
Implementation of Services Discovery Agent in Web
Services Composition Framework”, Proceedings of the
Fourth International Conference on Machine Learning
and Cybernetics, Guangzhou (ICMLC'05), 18-21
August 2005, Volume 1, pp.78 – 84

[7] Yannis Makripoulias, Christos Makris, Yiannis
Panagis, Evangelos Sakkopoulos, Poulia Adamopoulou
, Athanasios Tsakalidis, “Web Service discovery based
on Quality of Service”, IEEE International Conference
on Computer Systems and Applications (ICCSA'06),
March 2006, pp.196 – 199

[8] Brahmananda Sapkota, Dumitru Roman, Sebastian
Ryszard Kruk, Dieter Fensel, “Distributed Web Service
Discovery Architecture”, Proceedings of the Advanced
International Conference on Telecommunications and
International Conference on Internet and Web
Applications and Services (AICT/ICIW 2006), Feb.
2006, pp.136 – 136

[9] Anand Sangtani, Ravinder Pal, Jia Zhang, “Short
Circuit Switch –An Intelligent Web Services Discovery
and Invocation Engine”, Proceedings of the 2005 IEEE
International Conference on Services Computing
(SCC'05), July 2005, pp.:241 - 242 vol.2

[10] S. Simmons, “Introducing the WebSphere Integration
Reference Architecture: A Service-based Foundation
for Enterprise-Level Business Integration”, IBM
WebSphere Developer Technical Journal, Aug. 17,
2005, available at: http://www-
128.ibm.com/developerworks/websphere/techjournal/0
508_simmons/0508_simmons.html.

[11] Ted Neward, Effective Enterprise Java, Addison
Wesley Professional, Boston, August 26, 2004

[12] Ivo Adan, Jacques Resing, Queueing Theory, February
28, 2002, available at:
www.win.tue.nl/~iadan/queueing.pdf

[13] AndreasWillig, A Short Introduction to Queueing
Theory, July 21, 1999, available at: www.tkn.tu-
berlin.de/curricula/ws0203/ue-kn/qt.pdf

The 9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services(CEC-EEE 2007)
0-7695-2913-5/07 $25.00 © 2007

