
A Web Service Selecting Model Based on
Measurable QoS Attributes of Client-Side

Shu-jia Wang
School of Software

Shanghai Jiao Tong University, SJTU
Shanghai, P.R.China
ggoodd@sjtu.edu.cn

Hao-peng Chen
School of Software

Shanghai Jiao Tong University, SJTU
Shanghai, P.R.China
chen-hp@sjtu.edu.cn

Abstract— As more and more Web Services appear on the public
Internet, Quality of Service (QoS) becomes one of the most
important factors for Web Service selection. Meanwhile,
accuracy and speed of Web Service selection come to be the new
barriers. Focusing on those QoS attributes that are measurable
on client-side, this paper proposes a new Web Service selecting
model, extending the general searching architecture. In our
model, a multiple -level cache architecture is implemented to
speed up the selecting process. And inside of the architecture,
similarities of clients and caches are taken into account to
improve the accuracy of selection with historical service
information.

Keywords-web service; selecting; QoS; cache; similarity

I. INTRODUCTION
Web Services have become one of the most promising

technologies in distributed computing. Meanwhile, QoS, giving
a way to distinguish and rank services with similar
functionality, is taken into account during Web Service
selection, as more and more Web Services come out.

In order to improve the accuracy with the constraint of
QoS, feedback mechanism is implemented during the process
of Web Services selection. By making use of historical
information of all the clients having experienced the service,
average values of QoS attributes about this service is gained.
But since clients reside in a heterogeneous environment, QoS
experienced by clients for the same Web Service can vary
widely. Therefore, QoS based on server-side may not be too
much valuable for clients, and the average QoS of all clients is
also not very efficient.

In the general Service-Oriented Architecture (SOA), client
requesting a service has to send the request to the Service
Registry at first. After receiving a reply about service
provider’s information, the client could access the service
provider to get the service. As the communication between
client and Service Registry is usually not so fast, the requesting
and responding processes become the bottleneck of QoS that
clients experience besides the service itself.

II. RELATED WORK
QoS is an important factor in selecting Web Service

providers when there is more than one provider offering the

same or similar service. As a result, there are many different
definitions for QoS of Web Service. In [1], attributes of QoS
are defined as availability, accessibility, integrity, performance,
reliability, regulatory and security. It points out that QoS
attributes should contain availability, response time, throughput
and security etc in [2]. Based on the unique features of SOA,
availability, performance, reliability, dynamic discoverability,
dynamic adaptability, dynamic composability are summarized
as six quality attributes[3].

Web Service Discovery mechanisms have been reviewed
extensively in the work of [11]. In general, these mechanisms
do not usually take into account QoS concerns such as the
response time. Without affecting the existing UDDI search
facilities, reference [9] describes a mechanism for discovery in
a generalized environment that stores a dynamic number of
categories of different Web Services, and has implemented
UDDI search wrapper to take into account possible QoS
characteristics available in transparent way.

Currently, there are two popular ways to identify the QoS.
One is the description of service provider; and the other is the
feedback from clients that have implemented the service. There
are some solutions that support Web Service selection based on
QoS of service provider. One is UDDIe [6] in which QoS
information is advertised by the provider. WSME [7] enables
requirements to be specified by both clients and providers.

Reference [4] analyzes the factors that contribute to the
effective performance experienced by a client and shows the
importance of client grouping and profiling, in which will
contribute critical information to be used for dynamic selection
of Web Service based on performance. A high level web
service recommendation based on performance experienced by
the client is also proposed in [5], which establishes an on-going
analysis framework to help build Web Service profiles and
client profile to estimate the client-side performance.

III. FRAMEWORK OF NEW WEB SERVICE SELECTING MODEL
Clients are end users of Web Services, and QoS of a Web

Service is expressed on the client-side at last. So it makes sense
to do the Web Service Selection based on QoS properties of the
client-side. QoS experienced by client-side is affected by many
factors [4]. For example, physical location is a useful factor as
the clients residing closely experience a similar network

This paper is supported by the National High-Tech Research
Development Program of China (863 program) under Grant No.
2007AA01Z139

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.659

385

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.659

385

environment. So that client grouping is important for the
selection of Web Service.

U
pd

at
e

R
e q

ue
st

/
F e

ed
ba

c k

G
et

 S
er

vi
ce

Figure 1. Framework of the new WS selecting model

Among so many attributes of QoS shown in Sector 2, we
focus on measurable attributes, such as latency, transfer rate
and response throughput. Based on these measurable QoS
attitude on client-side, we propose a new Web Service
selecting model, of which the framework is shown as Fig 1.

C
caches

C
aches

Su
b

Figure 2. Cache architecture

First, clients are clustering in group mainly according to
their network environments. Because one group of clients
shares a unique Cache to request services and get information
of the comfortable service. It is much faster for the clients to
access their Cache than to access the Service Registry.

The Cache is multiple-level architecture as shown in Fig 2.
Service Registry communicates with top-level Caches which
map several down-level Caches. Every Cache of end point not
only keeps historical information of services implemented by
clients of its group, but also a proxy that clients request
services. There are several tables kept in Cache as follows.

• ServicesList: ServicesList keeps QoS information of
services that clients of this group have gotten. The
information should be kept the same with that in
Service Registry and the approach will be illustrated in
the latter section.

• RecordsOfServiceImplements: For every service in the
ServicesList, there is at least one record in the
RecordsOfServiceImplements. Clients that have
accessed this service as well the actual service
implementing quality are included in the record.

• SimilarityTable: The similarity of clients or Caches is
stored in this table. This table will updates regularly
according to records in RecordsOfServiceImplements.

(,)
1 :

2
3 .
4

6

localCache service function

service

estimate

selection function QoS
if ServiceList set service

for each item in set
do if item num N

then
calculate QoS

 ←

 ≥

5

7
8

:

10 7
11

estimate

up levelCache service function

if QoS matches QoS
return item

else do
ServiceList set service
repeat steps

until goto

−

9 ←

 2 −

,

,

12

13
function QoS

function QoS

Service Registry
return service
add service to Caches

Figure 3. Selection algorithm

As shown in Fig 3, when a client wants to apply a service,
it first sends its request to the cache of its group. Then the
cache traverses the ServicesList. If there is a service satisfying
the functional requirement as step 1 in Fig 3, local Cache will
research the historical records of this service in
RecordsOfServiceImplements. Then as step 3-7, if there are
enough records for estimation, with the similarity of
SimilarityTable, an estimated QoS attribute is gained to match
the client’s request. If no service could match the request, the
selection goes to step 9 that Cache sends it to the up-level
Cache. After step 10, that means no services are found, the top
Cache will access the Service Registry for the service. In the
end, this new service will be added into the ServicesList of all
researched Caches. After implementing the service, QoS and
other related information will be sent to the local Cache.

IV. ESTIMATE BASED ON SIMILARITY
Clients in a same or similar environment have similar

experience about the QoS of a same service. We make a client
grouping based on static factors similarity, such as location,
network, and so on.

To simplify the description of our approach, we formalize
the motivating problem at first.

 1 2{ , ,..., }mC C C C= (1)

386386

 1 2{ , ,..., }nS S S S= (2)

{ }1 , 2 ,...,ij ij ij ijQ q q ql=

 (3)

C is a group of clients with a limited similarity and Ci (1 <=
i <= m) denotes a client. S is a set of services where Si (1 <= i
<= n) denotes one service. Qij is a vector representing the
quality of Sj measured by client Ci. l denotes the number of
regarded QoS properties. qkij denotes the value of the kth
property of QoS of service Sj measured by client Ci.

To identify similarity of clients, we use a Euclidean
Distance function as a basic similarity measure. For multitude
property of QoS, if there is a set of QoS constraint, every single
property should be calculated and considered separately, since
different property has less connection with others. So, we
discuss similarity with single property of QoS first.

Similarity of two clients Ca and Cb together having
implemented services Sn is determined as:

2

1

()
n

ab ak bk
k

D q q
=

= −∑
 (4)

Dab is the Euclidean Distance of client a and client b. qak
and qbk is the quality of service k that client a and client b
experienced. The n is the number of the records taken into
account. The less the Dab is, the more similar client a and b are.
When a and b are the same client, the Dab is 0. Euclidean
Distance is efficient to identify the similarity between clients
relatively. But it is not convenient to estimate the unknown
value of QoS, so we extend the formula.

 1
/

n

x xi
i

q q n
=

=∑
 (5)

() ()2 2

1 1

/
n n

ab ai a bi b
i i

W q q q q
= =

= − −∑ ∑
 (6)

 In (6), Wab is the similarity weighting between client Ca
and Cb on the property. For an unknown service Sx for client a,
we can get the estimated value of the property with other
clients that have implemented service Sx before.

 1

() /
m

ax a jx j aj
j

q q q q W m
=

= + −∑
 (7)

 qax is the estimated QoS value of service Sx that client Ca
maybe experienced. Cj (0 <= j <= m) is client that has
implemented service Sx before. Waj is the similarity weighting
between Ca and Cj.

When there is no historical information of the service
requested in the local group, the request will be delivered to
up-level cache to search the service in other caches of the same
level. Every cache matches one group of clients or one group
of low-level caches. Average values of properties of QoS of all
services are kept in the cache.

1 , 2 ,...,ij ij ij ijCQ q q ql=< >

 (8)

 1
/

m

lj lij
i

q q m
=

=∑
 (9)

Formula (8) represents the quality of Service Sj measured
by cache CAi. As shown in (9), the average value of the kth
property of QoS of Service Sj is measured by cache CAi, and
qlij denotes the average value of k property of QoS of Service Sj
measured by the client Cl under Cache CAi. To be mentioned, if
cache CAi is not the lowest level cache, qlij is the average value
of the kth property of QoS of service Sj measured by the cache
CAl under Cache CAi.

 1
/

n

x xi
i

Cq q n
=

=∑
 (10)

2 2

1 1

() / ()
n n

ab ai a bi b
i i

CW q Cq q Cq
= =

= − −∑ ∑
 (11)

When no enough records of service historical information,
the local cache will deliver the request to the up-level cache
and search the service in other same level caches. Similarity
among caches is calculated as (11) where average values of
properties of QoS in caches take place of clients in (10).

 1

() /
m

ax a jx j aj
j

q q q q W m
=

= + −∑
 (12)

Having found the enough QoS records of the service, an
estimated value for client Ca is calculated by (12), where CWab
is used to take place of the similarity Waj of client Ca and the
clients in records.

V. UPDATE INFORMATION OF SERVICES
The most important fact for Cache-mechanism is that the

information in caches must keep the same with that in the
Service Registry. Since service providers maybe update or
delete the service description, once there is difference between
caches and Service Registry, the service request will fail.

Service Registry, taking UDDI for example, is usually
organized around two fundamental entities that describe
business and the service they provide. First entity is business
entity, including provides information, service entity elements
that represent the services, a category bag to categorize the
business, and a unique key. Second entity is service entity,
including information such as name and description, a unique
service key, a category bag to categorize the service, a list of
binding templates encoding the technical service information,
and a reference to its host with a business key.

To clearly indicate the update for services of Service
Registry, we abstractly describe the model of services
published in Service Registry as following form:

 , , , int,Key Name Description AccessPo OverviewURl< > (13)
In (13), Key uniquely identifies a service registered in the

Service Registry. Name is a readable service name. A general
description of the service is stored as Description. Access Point

387387

is the interface of the service. OverviewURL denotes the access
location of the WSDL document. When a client requests this
service, it can get the detailed description of service through
the URL stored in OverviewURL, and then access this service
by the address identified by AccessPoint.

C
caches

C
aches

U
pd

at
e

U
pd

at
e

U
pd

at
e

U
pd

at
e

Figure 4. Update information of Caches

In our new model, there is a list for services to store caches
of top level that keep information of the service as

,Key CacheList< >

 { }1 1, 1 2,..., 1CacheList Cache Cache Cache n= − − −
 (14)

Key is the service key in (13). CacheList is caches having
records of the service identified by Key. When updated
information arrives, Service Registry updates the information
and then pushes it to the up-level caches. After updating, the
up-level caches push the information to the down-level caches
as Fig 4. At last, all the service information in Caches and
Service Registry are fresh.

VI. SIMULATION EXPERIMENTAL RESULTS
Aiming to test the feasibility of this model, five clients are

chosen to imitate the real clients requesting web services.
Client A, client B and client C are in one group, and D, E, F are
in other groups. In the following table, the latency for each
client implementing different services is recorded. It needs to
be mentioned that the latency is an average value in this table.

TABLE I. HISTORICAL SERVICES RECORDS OF CLIENTS

Clients S1(ms) S2(ms) S3(ms) S4(ms) S5(ms)
A 495 201 346
B 412 150 280 378
C 320 109 229 254
D 2289 1838 2005 2179 1904
E 1967 1682 1863 1923 1789
F 763 325 453 518 486

According to the table, the similarity of A, B, C could be
gotten through (6). The similarity described by Euclidean
Distance is shown in the following table. This table is the
SimilarityTable stored in the Cache of this client group.

TABLE II. SIMILARITIES AMONG CLIENTS

Clients A B C
A 1 1.12216 1.38904
B 0.89114 1 1.23783
C 0.71992 0.80787 1

Client A would request service S4 and sends the request to
the Cache. The Cache first accesses the ServicesList and if the
service exists, then accesses the RecordsOfServiceImplements
that keeps the record of the service feedback by clients in this
group.

TABLE III. LAST LATENCY RECORDS OF SERVICE S4

Service Client Latency(ms) Date
S4 B 377 06/05/2008
S4 C 251 06/05/2008
S4 A 430 06/04/2008
S4 B 368 06/04/2008
S4 B 380 06/02/2008

An estimated quality value could be got by (7). Then, Qa4 =
436.14ms. Without the similarity, the average Qavg is 361ms.
And the real result for Client A is 434ms. So, this model
supplies a more approximate value.

TABLE IV. AVERAGE LATENCY RECORDS IN CACHES

Caches S1(ms) S2(ms) S3(ms) S4(ms) S5(ms)
Ca1 409 153.33 285 316
Ca2 2128 1760 1934 2051 1846.5
Ca3 752 316 430 509 480
Ca4 908 387 513 624 532
When no records about service S5 requested by Client A are

stored in this Cache, the request is delivered to up-level Cache
to search the service. In the up-level Cache, information as
following is kept.

Similarities among Caches are calculated as in the following
Table 5. By (12), using similarity of Caches to stand for
similarity of clients, we can get the estimated value of service
S5 for client A. Qa5 = 332.82ms compared with the average
Qavg is 1393ms. And the real value is 341ms. The estimated
value is much more accurate than the average value.

TABLE V. SIMILARITIES AMONG CACHES

Caches Ca1 Ca2 Ca3 Ca4
Ca1 1 0.14776 0.57964 0.47834
Ca2 6.76764 1 3.92277 3.23725
Ca3 1.72522 0.25492 1 0.82525
Ca4 2.09055 0.30890 1.21176 1

388388

VII. PERFORMANCE OF THIS MODEL
The efficiency of this WS selecting model depends mostly

on two facts. One is how fast the aim web service is found. The
other is the accuracy of the estimation based on the similarity
and historical records.

Cache mechanism is based on the theory that services being
requested are possible to have been accessed before.

For our model, once a service has been accessed, time of
requesting this service in future will be shortened very much.
This model can provide a remarkable improvement about
access time in most situations except one, that the service has
never been implemented by any clients at all, meaning Service
Registry is still accessed at last after all levels of Caches have
been visited.

Compared with the average value of QoS properties of
overall clients, our model offers a more accurate estimated
value. By calculating similarities among clients and Caches,
the actual network environments and local equipment
performance as well other effective factors are taken into
account. And the closer those clients are in the Cache
architecture, the more accurate the estimation is.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a new model for Web

Service Selection based on performance experienced by clients.
Since different client may have a heterogeneous environment,
we take advantage of similarity of clients in a similar
environment to estimate the quality of service, taking place of
the average quality, so that the accuracy of Web Service
Selection with constraint of QoS is improved apparently.
Along with the similarity, Cache-mechanism for services is
applied in this model to speed up the selection. With this model,
Web Service Selection becomes more efficient than before.

Multitude attributes will be taken into account in the future
research. Now this model just focuses on one single
measurable attribute of QoS, but future Web Service Selection
would be with more complex constraint of QoS. Further, how
to deal with composed services is also a challenge in this Web
Service Selection model.

REFERENCES
[1] A. Mani and A. Nagarajan, “Understanding Quality of Service for Web

Services,” http://www.ibm.com/developerworks/library/ws-quality.html,
January 2002.

[2] Menasce D.A., “QoS Issues in Web Services,” IEEE Internet
Computing, November-December 2002, vol.6, pp. 72-75.

[3] Si Won Choi, Jin Sun Her, and Soo Dong Kim, “QoS Metrics for
Evaluating Services from the Perspective of Service Providers,” DOI
10.1109/ICEBE.2007.107.

[4] Niko Thio, Shanika Karunasekera., “Client Profiling for QoS-Based
Web Service Recommendation,” the 12th Asia-Pacific Software
Engineering Conference (APSEC’05).

[5] Niko Thio, Shanika Karunasekera, “Web Service Recommendation
Based on Client-Side Performance Estimation,” the 2007 Australian
Software Engineering Conference (ASWEC’07).

[6] Thomas Erl, “Service-Oriented Architecture a Field Guide to Integrating
XML and Web Services,” Prentice Hall PTR, 2004.

[7] Eric Newcomer, Greg Lomow, Understanding SOA with Web Services,
pp. 123-124.

[8] V. Deora, J. Shao, W. A. Gray, N. J. Fiddian, “Modeling Quality of
Service in Service Oriented Computing,” Proceedings of the Second
IEEE International Symposium on Service-Oriented System Engineering
(SOSE'06).

[9] Yannis Makripoulias, Christos Makris, Yiannis Panagis, Evangelos
Sakkopoulos, Poulia Adamopoulou and Athanasios Tsakalidis, “Web
Service Discovery Based on Quality of Service,” 1-4244-0212-
3/06/©2006 IEEE.

[10] Bin Li, Xiao-yan Tang, Jian Lv, “the Research and Implementation of
Services Discovery Agent in Web Services Composition Framework,”
Proceedings of the Fourth International Conference on Machine
Learning and Cybernetics, Guangzhou (ICMLC'05), 18-21 August 2005,
Volume 1, pp.78 – 84.

[11] C.Schmidt and M.Parashar, A peer-to-peer approach to web service
discovery in World Wide Web, vol. 7 (2), pp. 211-229.

[12] Maximilien, E.M., Singh, M.P., “A framework and ontology for
dynamic Web services selection,” Internet Computing, IEEE Volume
8, Issue 5, Sept.-Oct. 2004, pp.84 – 93.

[13] Dr. Srinivas Padmanabhuni, Bijoy Majumdar, Mohit Chawla, Ujval
Mysore, “A Constraint Satisfaction Approach to Non-functional
Requirements in Adaptive Web Services,” International Conference on
Next Generation Web Services Practices (NWeSP'06).

[14] Niko Thio, Shanika Karunasekera, “Automatic Measurement of a QoS
Metric for Web Service Recommendation,” 2005 Australian Software
Engineering Conference (ASWEC’05).

[15] Tao Yu, Yue Zhang, Kwei-Jay Lin, “Modeling and Measuring Privacy
Risks in QoS Web Services,” IEEE. Enterprise Computing, E-
Commerce, and E-Services, 26~29. 2006(6).

[16] N.W. Lo_, Chia-Hao Wang, “Web Services QoS Evaluation and Service
Selection Framework - A Proxy-oriented Approach,” 1-4244-1272-
2/07/©2007 IEEE.

[17] Dirk Krafzig, Karl Banke, Dirk Slama, Enterprise SOA Service-Oriented
Architecture Best Practices, Prentice Hall, 2005.

[18] BangYu Wu, Chi-Hung Chi, Shijie Xu, “Service Selection Model Based
on QoS Reference Vector,” 2007 IEEE Congress on Services
(SERVICES 2007).

[19] Dr. Srinivas Padmanabhuni, Bijoy Majumdar, Mohit Chawla, Ujval
Mysore, “A Constraint Satisfaction Approach to Non-functional
Requirements in Adaptive Web Services,” International Conference on
Next Generation Web Services Practices (NWeSP'06).

[20] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, Pål
Krogdahl, Min Luo, Tony Newling, Patterns: Service-Oriented
Architecture and Web Services, IBM Redbooks, ibm.com/redbooks.

[21] Rashid, M.M. Alfa, A.S. Hossain, E. Maheswaran, M, “An analytical
approach to providing controllable differentiated quality of service in
Web servers,” IEEE. Parallel and Distributed Systems.
16(11):1022~1033. 2005(11).

[22] Liangzhao Zeng, Boualem Benatallah. Etc, “QoS-Aware Middleware for
Web Services Composition,” IEEE Transactions on Software
Engineering 30(5):311-327. 2004(5).

389389

