

A Reliability Evaluation Framework on Composite Web Service1

Jiang Ma, Hao-peng Chen,

School of Software, Shanghai Jiao Tong University, 200030 Shanghai, P.R.China
ma.jiang@hotmail.com, chen-hp@sjtu.edu.cn

1 This paper is supported by the National High-Tech Research Development Program of China (863 program) under Grant No.
2007AA01Z139

Abstract

The composition of web-based services is a process
that usually requires advanced programming skills and
vast knowledge about specific technologies. How to carry
out web service composition according to functional
sufficiency and performance is widely studied. Non-
functional characteristics like reliability and security play
an important role in the selection of web services
composition process. This paper provides a web service
reliability model for atomic web service without
structural information and the composite web service
consist of atomic web service and its redundant services.
It outlines a framework based on client feedback to gather
trustworthiness attributes to service registry for reliability
evaluation.

Keywords: Reliability Evaluation, Composite Web
Service

1. Introduction

The development of software systems frequently
entails the need to integrate diverse applications within an
enterprise and across enterprises. Different kinds of
application integration technologies, such as object-
oriented middleware, message-oriented middleware, and,
more recently, the Web services platform, have been
proposed for this purpose [3].The Web service technology
has captured the attention of practitioners and academia as
a promising solution to cost-efficient and manageable
application integration.

According to the Stencil Group, Web services are
“loosely coupled, reusable software components that
semantically encapsulate discrete functionality and are
distributed and programmatically accessible over standard
Internet protocols” (www.stencilgroup.com).

A web service is characterized by its flexibility to
encapsulate discrete business functionalities and its
interoperability to support universal application
integration [2]. Composition of computational resources
and web-based services into integrated solutions is a key
activity to enhance offerings and allow for a smooth
process from the point of view of customers. Such

integration process has been greatly simplified with the
advent of web services technology.

On composing a dependable and reliable web service,
we must ensure this composite web service has the
capacity to monitor every atomic service, evaluate and
enhance the reliability. The Internet where WSs operate in
is a failure-prone environment. A component WS may
become unavailable at runtime causing failure to the
execution of the composite WS. In particular, executing a
WS operation on a (temporarily) unavailable WS triggers
an exception, and the handling of an exception may
involve rolling back the earlier operations of the
composite WS and re-executing them on other component
WSs, resulting in a waste of computing resources and
slow response time [1].

The quality of a web service based application fully
dependents on the services of which it makes up. In a near
future, the amount of services on the internet will increase
greatly. It becomes an important problem that how to
guarantee that the services using by one application all
have good quality among the huge number of services on
the internet.

The Universal Description, Discovery, and Integration
specifications offer users a unified and systematic way to
find service providers through a centralized registry of
services that is roughly equivalent to an automated online
"phone directory" of Web services [6]. Service registry is
not only a static centralized storage pool of service
descriptions, but also should verify the service qualities
based on the static service descriptions to improve the
creditability of the services registered on it, and analyze
the feedbacks of applications.

The main structure of this paper is: the second part of
the paper introduces some related works on reliability
modeling in software, grid computing and web service.
The third part provides the model of reliability evaluation.
The fourth part puts forward a feedback framework based
on above-mentioned model and then case study in the
fifth part with discussion. Finally, there are conclusions
and future work.

2. Related work on reliability modeling

The research of modeling and evaluation software
reliability is along with the software evolution. IEEE
defines the key concepts of software reliability [7]

2008 IEEE International Symposium on Service-Oriented System Engineering

978-0-7695-3499-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SOSE.2008.41

123

• Failure is the inability of the software to
perform its mission for function within
specified limits. Failures are observed during
testing and operation.

• Software reliability is the probability that
software will not cause the failure of a
product for a specified time under specified
conditions. This probability is a function of
the inputs to and use of the product as well as
a function of the existence of faults in the
software.

Actually web service reliability is not just concerned of
software and web service itself. Many factors could affect
the functional execution of web service such as churn of
network, stability of web service server. [8] categorized
failures in grid computing into: blocking failures, time-out
failures, matchmaking failures, network failures, program
failures, resource failures. Those kinds of failures also
exist in web service domain. The hierarchical modeling
maps the physical and logical architecture of the service
system and makes the evaluation and analysis clear and
simple by identifying the independence among layers.[9]
suggested a SOA(service oriented architecture) reliability
evaluation model using two attribute: availability, which
is the quality attribute of whether the web service is
present or ready for immediate use, and accessibility,
which is the quality attribute of service that represents the
capable of serving a web service request.

[4] examines reliability of an entire application created
from a set of web services. In that context, it places
greater emphasis on combining reliability measures for
different web services, than on determining the
antecedents of reliability for each web service. It views
reliability of web services as a measure of failure-free
operation, without modeling the source and type of
failure. Back to the definition of failure, when a web
service could not accomplish its mission for function, it
will be considered as a failure occurred. We adopted this
idea based on our web service consumer feedback
models. Consumer encounter an inability to fulfill the
functional behavior, it will send a failure report to data
collector in UDDI whose data is used for reliability
evaluation.

[10] suggested a web service evaluation model using
group testing technique which is originally developed for
testing large samples of blood. It uses this technique to
test the contamination of an entire group of services by
applying one test. Test phrase is often maintained by the
service provider, and it’s a challenge for a service
consumer to test a web service when the service is on site
especially if not free. We believe it is easier for a client to
compose web services using the data collected in the
operation phase.

3. Reliability computing model

Based on research of web service, many studies aim at
combination of web service. In this paper, composed web
service is defined as,

{ } []()1iC N i n= ∈ … (3-1)

C defines the composite web service for reliability
evaluation. The basic unit of composite web service is
defined as a node iN , n is the number of nodes in the
composite service. Service node is defined as,

{ } [] [](), 1... , 0...i i ijN S B i n j q= ∈ ∈ (3-2)

iS is the primary service in the composite service. Each
node could only contain one primary service. When
composite service process to a particular node, it will
always invoke primary service first. As primary service
may fail during particular time, backup services could
substitute to act the desired behavior. So ijB is the backup

service for iS , and q is the number of backup service. 0
means there is no backup service for the primary service,
whereas q>1 means a redundancy service pool.

Each single web service in the node is regard as atomic
web service. an atomic web service is a service that
should be treated as a unit that is not to be broken.

During this section, we will first discuss a reliability
model for atomic web service and then this model will
extend to apply for a single node, at last we will reference
a business process reduction algorithm for computing
composite web service.

3.1 Atomic web service reliability

The following are the assumptions concerning this
system that will be used throughout this paper.

• Each web service has only 2 states, working
state and failure state.

• The single web service is assumed to have a
failure intensity parameter λ .

• When web service is at failure state, service
provider will try to fix this failure, and the fix
time which including locating time and fixing
time, follows an exponential distribution with
a parameter μ .

• Each failure occurred is mutually independent.
• The initial state is working state.

Note that we assume each failure occurred is mutually
independent which means reliability of each web service
is independent. It can be argued that this assumption does
not always hold, in that multiple web services from a
vendor may prove to be unavailable if the vendor’s site is
down temporarily. For the purpose of web service

124

evolution, numbers of web service will decentralized by
deferent service provider, we adopt the standard
characterization of independence, though.

Based on those assumptions, we use time-dependent
Markov model which is widely used in reliability
evaluation field.

For this single web service, we define ()0P t as the

probability when the service is at working state and

()1P t as the probability when the service is at failure

state. The corresponding Kolomogorov’s equations are

() () ()0 1 0'P t P t P tμ λ= − (3-3)

And

() ()1 01P t P t= −
 (3-4)

With the initial condition ()0 0 1P = , ()1 0 0P = ,it can

be shown that ()0P t is the reliability of the single web

service.

3.2 Node reliability

In order to enhance web service reliability, the most
practical way is to build a service with backup services.
Backup services are usually heterogeneous, and provided
by different service provider, so the characteristics of
these services is different. In our model, it means those
service have different failure intensity parameter λ and
exponential distribution.

We use Markov chain to evaluate those web services.
We first describe a simple one-backup service case, and
the general case will be discussed later. The figure 1
depicts the Markov state transitions.

State 0: initial state, all service working
State 1: service S down, B working
State 2: service B down, S working
State 3: both services S, B down.

Figure 1. Markov chain state transitions
Service S is primary web service and B is backup

service. Their intensity parameter is Sλ and Bλ , Sμ and

Bμ stands for repair rate. Let ()iP t denotes the

probability that the system is in state i at time t. The
corresponding Kolomogorov’s equations are

() () () () ()0 1 2 0' S B S BP t P t P t P tμ μ λ λ= + − +
(3-5)

() () () () ()1 0 3 1' S B S BP t P t P t P tλ μ μ λ= + − +
(3-6)

() () () () ()2 0 3 2' B S B SP t P t P t P tλ μ μ λ= + − +

(3-7)

() () () () ()3 1 2 3' B S S BP t P t P t P tλ λ μ μ= + − + (3-8)

With initial condition

()0 0 1P = and ()0 0jP = for j=1,2,3.

With this initial condition, the differential equations are
solvable numerically.

So the reliability R = ()31 P t−

 In general case, usually a web service is build up with
a set of backup services. We define this web service
architecture as a node. The failure intensity parameter of
service S is Sλ and repair rate is Sμ . For backup service
set, B down means all backup services failed. So the

failure intensity
1

i

n

B b
i

λ λ
=

= ∏ .when all backup services

are not working, recovering an arbitrary backup service
will make the backup service set working. So the repair
rate of S is fμ , fμ denotes first recovered backup web

service repair rate.
 So we can derive the corresponding Kolomogorov’s

equations for web service in general case,
() () () () ()0 1 2 0' S f S BP t P t P t P tμ μ λ λ= + − +

(3-9)

() () () () ()1 0 3 1' S f S BP t P t P t P tλ μ μ λ= + − +
(3-10)

() () () () ()2 0 3 2' B S f SP t P t P t P tλ μ μ λ= + − +

(3-11)

() () () () ()3 1 2 3' B S S fP t P t P t P tλ λ μ μ= + − + (3-12)

With initial condition

()0 0 1P = and ()0 0jP = for j=1,2,3.

So the reliability R = ()31 P t−

3.3 Aggregated Reliability of composite web
service

In the above section, we discussed the reliability
evaluation method for atomic service and a web service
with a set of backup services. In this section, we will
propose a way to evaluate a business process composed
with web services.

A composite web service usually make use of those
functional web service to accomplish a business process,
it is much similar as a work flow process. The aggregated
reliability apparently depends on the structure of the
business process. The independence degree between
services and redundancy of a service is also the factors
that affect aggregate reliability. These two factors we

0 21

3

125

already discussed in above 2 sections. Composite web
service structure could be viewed as nodes and the
relationship between nodes. For the aggregated reliability,
as we defined, the basic unit of a composite service is
nodes, and operation relationships between nodes
determine behavior of the composite service. So the
composite web service reliability could define as

{ },
ic N sR R O= (3-12)

cR denotes the aggregate reliability,
iNR denotes

reliability of each node and sO is the operation
relationship of sub set of node set.

From above discussion, we could measure every node
of this business process. For the operation relationship,
we adopt Jorge Cardoso’s

Stochastic Workflow Reduction

(SWR) algorithm [5]. Cardoso identify the following
relationships: sequential, parallel, conditional, simple loop,
and dual loop. Each activity is a data assignment,
exchanging an event, doing an action, or executing a sub-
process, applying those relationships, we can compute
composite service reliability.

[4] summarized reliability SWR algorithm which
shows in Table 1 to evaluate the aggregated reliability of
a business process.

Table 1. Combining reliability measures

4. Consumer Feedback based composite
service framework

Figure 2. Reliability evaluation framework

Figure 2 shows our evaluation framework. All service
providers register their web services on the UDDI which
holds functional and non-functional information of these
web services in service descriptor. When each client
invokes and consumes web service, it will automatically
feedback QoS information to UDDI. The repository
stores QoS information from data collector which is the
feedback interface of UDDI. Based on those QoS
information, a composite service could evaluate its
reliability and when this composite service applies to
other web service or backup services pool, the reliability
will be reevaluated.

Notice that in our model, the feedback information we
collect is from client. The common way for QoS
collecting is from service provider side which adds extra
QoS metrics when data transport between consumers and
providers. UDDI acquires this information from service
provider and utilize it to recommend. However, the
challenge of this model is the trustworthiness and
accuracy of the information the provider feedbacks. We
believe this pivot data for recommendation and evaluation
should be took by a third party UDDI framework.

126

UDDI in our model collecting feedback from all those
web service registered and stores that information for
reliability evaluation. As a web service invoked by a great
number of service consumer, feedback reflect the service
provider reality. Service consumer feedback invocation
count number in in a specified period time to determine

the total invocation count number
0

m

i
i

N n
=

=∑ , where m

denotes the service consumer instances feedback. Every
time a service consumer faced a failure during service
processing it reports that to UDDI to determine the total
failure number f during a specified time. iRC is the time
interval between a web service failure and the most recent
successful invocation. C is the count number a failure
get repaired in a specified time interval which could be
configured to adapt different network state.

The reliability evaluation framework needs to record
the successor web service node set and count number iS
to determine the conditional probability between nodes.

Up to those discussions, we get all the parameter
needed in our revaluation framework,

f
N

λ =
 (4-1)

0

m

i
i

N n
=

=∑ (4-2)

0

p

i
i

C

RC
μ

=

=
∑

 (4-3)

0

i
i q

j
j

Sp
S

=

=
∑

 (4-4)

5. Case study

Suppose we have a composite web service in a specific
scenario. For simplification, this scenario just shows a
simulation of web service composition. Figure 3 shows
the composite web service.

Figure 3. A typical composite web service

Suppose when a client first composed this service, all
the node is atomic web service. Evaluating the composite
service, our framework retrieved client feedback of each
service from UDDI and applying it to our evaluation
model. Table 2 shows the details.

Table 2 Computing reliability for composite web
service

service λ μ reliability
1 0.003 0.2 0.9852
2 0.01 0.2 0.9524
3 0.002 0.18 0.9890
4 0.025 0.15 0.8572
5 0.005 0.15 0.9677
6 0.006 0.1 0.9434
7 0.025 0.15
8 0.025 0.15

The composite web service aggregated reliability

cR is,

()()
() ()1 2 3

4 6 5 6
1 2 3

1
1

c a b
c e f

c a b

p p R p R R
R R p R p R R

p p R p R R
− +

= +
− +
1a bp p+ = , 1c dp p+ = , 1e fp p+ =

By assuming ap =0.6, cp =0.6, ep =0.7, cR =0.7278.

We can see 4R is the week point of this composite web
service. In order to enhance this composite service, we
add a backup service pool made up of 7S and

8S .applying our evaluation model, the reliability of node

4 will improve to 4R =0.9994, so the aggregated

reliability is improved to cR =0.8485.

6. Conclusion

127

The paper presented a reliability model of web service
and its redundant services which could be apply to
business process reduction algorithm to evaluate
composite web service reliability. We also introduced our
evaluation framework which is based on collecting
consumer feedback for trustworthiness QoS to service
registry for evaluation framework. As for any attributes of
quality, this framework can add existed attributes and
even more new attribute through the suitable model.
We also descript how the evaluation model we put
forward works with a study case. Actually, to demonstrate
the correctness and practicability of this mechanism, we
should develop a simulation application which runs on
our UDDI with data collector gathering client feedbacks.
It is also the next research step that we will take in future.

7. Reference
[1]ASan-Yih Hwang, Ee-Peng Lim, Chien-Hsiang Lee, Cheng-
Hung Chen, “On Composing a Reliable Composite Web
Service: A Study of Dynamic Web Service Selection”, IEEE
International Conference on Web Services (ICWS 2007) pp.
184-191.
[2]R. T. Rust and P. K. Kannan, “E-service: A new paradigm for
business in the electronic environment,” Commun. ACM, vol.
46, no. 6, pp.36–42, 2003.
[3] Thomas Mikalsen, Stefan Tai, Isabelle Rouvellou,
“Transaction alattitudes: Reliable composition of autonomous
Webservices”, http://www.research.ibm.com/AEM/pubs/wstx-
WDMS-DSN2002.pdf
[4]Hangjung Zo, Nazareth, D.L., Jain, H.K., “Measuring
Reliability of Applications Composed of Web Services”,

System Sciences, 2007. HICSS 2007. 40th Annual Hawaii
International Conference on Jan. 2007 Page(s):278c - 278c
[5]J. Cardoso, J. Miller, A. Sheth, and J. Arnold, “Modeling
Quality of Service for Workflows and Web Service Processes,”
Technical Report #02-002, LSDIS Lab, Computer Science,
University of Georgia, 2002.
[6]F. Curbera et al., “Unraveling the Web Services
Web: An Introduction to SOAP, WSDL, and
UDDI,” IEEE Internet Computing, vol. 6, no. 2,
Mar./Apr. 2002, pp. 86-93.
[7]Krajcuskova, Z. “Sotware Reliability models”,
Radioelektronika, 2007. 17th International Conference 4-25
April 2007 Page(s):1 - 4 Digital Object Identifier
10.1109/RADIOELEK.2007.371428
[8]Dai, Yuan-Shun; Pan, Yi; Zou, Xukai; “A Hierarchical
Modeling and Analysis for Grid Service Reliability”
Transactions on Computers Volume 56, Issue 5, May 2007
Page(s):681 - 691 Digital Object Identifier
10.1109/TC.2007.1034
[9] Zhenyu Liu; Ning Gu; Genxing Yang; “A Reliability
Evaluation Framework on Service Oriented Architecture”
Pervasive Computing and Applications, 2007. ICPCA 2007. 2nd
International Conference on 26-27 July 2007 Page(s):466 - 471
[10]W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul*, N. Liao
, “A software reliability model for Web services”, The 8th
IASTED International Conference on Software Engineering and
Applications, Cambridge, MA, September 2004

128

