
1. This paper is supported by the National High-Tech Research Development Program of China (863 program) under Grant No.
2007AA01Z139

An Improving Fault Detection Mechanism in Service-Oriented Applications based
on Queuing Theory

 Yang Shuo Hao-peng Chen
 School of Software,Shanghai Jiaotong School of Software,Shanghai Jiaotong
 University University
 Email:daivdsure@gmail.com Email:chen-hp@sjtu.edu.cn

Abstract
 SOA has become more and more popular, but fault
tolerance is not fully supported in most existing SOA
frameworks and solutions provided by various major
software companies.SOA implementations with large
number of users, services, or traffic, maintaining
the necessary performance levels of applications
integrated using an ESB presents a substantial
challenge, both to the architects who design the
infrastructure as well as to IT professionals who are
responsible for administration. In this paper, we
improve the performance model for analyzing and
detecting faults based on the queuing theory[6]. The
performance of services of SOA applications is
measuring in two categories (individual services and
composite services).We improve the model of the
individuals services and add the composite services
performance measuring.

1. Introduction

Serviced-oriented Architecture (SOA) is a novel
methodology for systems development to provide
services to either end-user applications or to other
services distributed in a network. Services are the
natural evolution of object-oriented and component-
oriented programming models, and web services are
becoming the prominent paradigm for electronic
business and interoperable applications across
heterogeneous systems.
 One of the important characteristics of SOA-based
applications that are different from traditional software
is dynamic discovery and composition of services [1].
This means that instead of spending a lot of time on
designing and coding, we build these applications based
on SOA through service discovery and composing. In
SOA, a service encapsulates reusable business
functionalities with platform-independent interface
contracts. A well constructed, standards-based SOA can
empower a business environment with a flexible
infrastructure and processing environment. And the
word “dynamic” just means SOA-based applications
should have the ability to discover and composite
services into themselves in runtime.

 It is possible to build non-SOA applications using
Web Services, so it is wrong to assume that Web
Services imply SOA. However, in a complex SOA
application, the communication between services can be
simply point-to-point, and also multi-point to multi-
point in a complex SOA [2]. Another important
development in the SOA environment is an Enterprise
Service Bus (ESB). ESB is a standards-based
integration platform that combines messaging, web
services, data transformation, and intelligent routing in
a highly distributed environment. The objective of an
ESB is to route messages between resources in a
reliable manner; that is, it guarantees message delivery.
Message routing may be done synchronously or
asynchronously between source and target systems.
Messages may be also be transformed from a source
format into a target format as they pass through the bus.
Other facilities offered by an ESB include load
balancing and failover. ESB middleware is available for
both the Microsoft. NET and Java J2EE environments.
This middleware may support a variety of SOA broker
technologies such as Web services, Java JCA,
Microsoft DCOM and CORBA. The advantages that an
ESB brings to the SOA environment are security,
reliability, scalability and the ability to interconnect
older SOA broker technologies with Web services [3].
 Dynamic discovery and composition requires four
capabilities: (a) to identify existing services that fail to
satisfy the functional or performance requirements for
SOA-based applications; (b) to generate queries to
locate alternative services that could replace existing
ones; (c) to efficiently execute these queries at runtime;
(d) to dynamically replace existing services during
application execution [4]. So it is necessary for the
applications to detect faults and locate the alternative
services to replace existing one that fail to satisfy the
functional or performance requirements at runtime.
 As the four capabilities above, the performance of
SOA-based applications is definitely important to
dynamic discovery and composition. It can be seen that
the SOA performance problem falls into two broad
categories: ensuring sufficient performance of
individual services as well as of the composite
services [5]. Individual services provide service
interfaces that encapsulate existing systems, ensuring
their performance necessitates managing the

2008 IEEE International Symposium on Service-Oriented System Engineering

978-0-7695-3499-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SOSE.2008.46

245

performance of the components, applications, and
systems that lie beneath the services abstraction. Well-
established capacity planning methods, techniques and
tools can be leveraged to manage the performance of
individual services, such as logging-based
instrumentation [7], or simulating the load on
service interfaces by load testing in a similar way
in simulating traditional web application performance
[8].
 Based on the research in [6], among the four
capabilities required by dynamic discovery and
composition, fault detection, the capability to identify
the failed existing services, takes precedence over the
other three, because successful fault detection is the
guarantee for them to be employed properly. As we
have mentioned, the purpose of fault detection is to
identify two kinds of services: the services that fail to
satisfy functional requirements and the services fail to
satisfy performance requirements. We focus on the
latter kind of services, because the failure of the former
kind of services may be caused by semantic errors
which have to be manually identified and corrected.
Meanwhile, the failure of the former kind of services
can be automatically detected via appropriate
mechanisms. We put forward a fault detection
mechanism, which is based on the queuing theory, to
detect the services that fail to satisfy performance
requirements. We also give a reference service model
and one reference architecture of fault-tolerance control
center of ESB based on our fault detection mechanism.
But the queueing theory model used in [6] is not
suitable and comprehensive enough, as it doesn’t
including the situation of the composite services.
Dealing with the performance issues of services
invoked in SOA applications always fall into the second
category and it is far more complex than that of atomic
services.
 In this paper, we put forward an improved fault
detection mechanism, which is based on the queuing
theory, especially queuing networks, to detect the
services that fail to satisfy performance requirements.

2. Rationale of this mechanism

 The purpose of our mechanism is to detect the
services which have not enough capability to satisfy the
performance requirements specified by application
assemblers. Performance, to put it simply, is how
quickly the system can respond to a given logical
operation from a given individual user. Response time
is a measure of the amount of time the system
consumes while processing a user request, which is
made up of three parts: latency, which is the amount of
time spent processing overhead just to get to the point
of carrying out a service; wait time, which is the time
spent waiting for the service, or, while the service is

executing, the time spent waiting for resources; and
service time, which is the time needed to process the
request when no waiting is involved [9].
 As we analysis in [6], we can find out that the service
requests processing has the following six features :

1. The interarrival times between any two
successive service invocation requests are
independent of each other and have a common
distribution.

2. The clients would receive responses if requests
are processed by service in time, or receive
exceptions due to the timeout of waiting. They
even could abort the service invocation requests
as their wills.

3. The service times needed for every request are
not only dependent on the status of services, but
also identically distributed. Furthermore, they are
independent of interarrival times.

4. The requests can be served in many possible
orders, such as first come first served, last come
first served, shortest processing time first,
random order, round robin, and so on. However,
the first come first served is still the predominant
order.

5. There may be a single service instance or a group
of service instances processing the requests.
Thus, there are several possible kinds of service
capacity.

6. Since the cache or buffer of the service hosting
environment is finite, the number of waiting
requests is limited. It means if the waiting room
of a service hosting environment is fully
occupied, when extra requests arrive at this
service, they would be lost.

 The above six features have shown that the model of
service requests processing is a typical queuing model,
so we can resort to queuing theory to establish our fault
detection mechanism.
 We add a Service QoS Descriptor in control enter of
Enterprise Service Bus (ESB), which contains the
several variables(containing the original mean response
time , updating mean response time) and acceptable
nonnegative error e and acceptable number of
successive failed periods n of each service in system.
When the application works, we continuously calculate
the mean number of requests waiting for serving, the
mean waiting time of requests, and the mean sojourn
time of requests in a period which contains certain
amount of unit time, and compare these real-time
variables with the expected variables stored in Service
QoS Descriptor. There must be difference between
these two set of variables, especially we focus on the
difference between the expected sojourn time and the
real-time mean sojourn time. If the difference exceeds e
for n times, we consider the corresponding service

246

deviates its steady state, and as a result, it cannot satisfy
the performance requirement any longer.

3. The algorithm this mechanism employs

 There are several items to discriminate different
queues, including: the distribution of the arrival times
between service invocation requests, the distribution of
service time, and the number of service instances. [10]
 In SOA-based applications, the number of service
invocation requests and the service time has Poisson or
exponential distribution, so the queues have an
important property: memoryless property. By
convention, we use M to respectively indicate the
number of service invocation requests and the service
time.
 For the services, there are several instances to serve
the clients. For example, if the service is implemented
as a servlet or EJB in J2EE, there is an instance pool in
application server to manage its multiple instances.
These instances are parallel instances, which mean each
instance serves only one client at any time. By
convention, we use S to indicate the number of service
instances.
 For any application server, its capacity is limited. So
the services hosting in application servers have the
upper limitation of the number of clients they could
serve. This upper limitation is the sum of the number of
service instances and the number of waiting requests
the queue could hold. By convention, we use k to
indicate the service capacity.
 We respectively analysis the performance of
performance of individual services and the composite
services.
 First, we use the queue model M/G/S/K to analysis
the individual services. We can use its features to
analyze services and detect the performance faults. We
use the following symbols to indicate the basic
conceptions in queuing theory:
 1. λ: indicates arrival rate, which denotes the rate at
 which requests arrive at the service.
 2.μ: indicates service completion rate, which
denotes the rate at which responses depart from the
service.
 3. ρ: indicates the occupation rate or server
utilization, which denotes the fraction of time the
server is working.
 4. p୨ : indicates the probability that there are j
requests in a queue when the queue reaches its steady
state. In particular, P0 denotes there is no request in the
queue, which means the requests could be served
immediately after they arrive in the queue and need
not to wait.
 5. L: indicates the expected length of queue, which
equals to the mean number of requests in service
 and the mean number of requests in the queue.

 6. L୯ : indicates the expected length of waiting
 queue.
 7. W: indicates the expected sojourn time.
 8.W୯: indicates the expected waiting time.

 Figure1: Flow diagram for M/M/c/c model

1. We set the unit time as 1 second, so in every
second, we record the number of requests arriving in
the service λ୧ , the number of requests departing
from each instance of the service µ୧,୨ . For every
period, such as every 100 seconds, we calculate the
λ and μ by the following formulae: λ ൌ ଵ୬ ∑ λ୧୬୧ୀଵ (1)

 µ ൌ ଵS୬ ∑ ∑ µ୧,୨S୨ୀଵ୬୧ୀଵ (2)

 2. Calculate ρ by the following formula: ρ ൌ Sµ (3)

3. Calculate p୬ by the following formula : p୬ ൌ ൬ಓµ൰

!∑ ൬ഊഋ൰
!సబ ൌ ಙ!∑ ಙ!ౙసబ (4)

4. Hence, the so-called blocking probability
 B(c, ρ) Bሺc, ρሻ ൌ p୩ ൌ ಙౡౡ!∑ ಙ!ౡసబ （5）

5 Calculate L by the following formula: L ൌ ∑ jp୨୩୨ୀ （6）
6 Calculate L୯by the following formula: L୯ ൌ ∑ jpୱା୨୩ିୱ୨ୀ （7）
7 Calculate effective arrival rate by the following
formula: λୣ ൌ λሺ1 െ P୩ሻ （8）
8 Calculate W by the following formula: W ൌ ଵ L （9）
9 Calculate W୯ by the following formula: W୯ ൌ ଵ L୯ （10）

 10 Compare W or W୯ with W’ or W୯’ stored
 in service QoS Descriptor (it depends on
 which one is more important for users) to
 check W െ W’ e （11）

247

Or W୯ െ W୯’ e (12)
 11. If the inequation in step 10 is true, than clear

the counter C, which counts the number of
successive failed periods. Then repeat to step 1.

 12 If the inequation in step 10 is false, increase C by

1, and compare C with n, if C is not greater than n,
repeat to step 1; otherwise, we consider that the
service can not satisfy our performance requirement.
As a result, we successfully detect a fault by our
criteria.

 When all instances are busy, the incoming requests
would be lost. So for some critical system in which the
loss of requests is forbidden, B(c, ρ) is also an assistant
parameter to determine whether the service works well.

 So far we have only looked at the individual services,
the second situation is focus on the composite services.
 The performance model here is solved using the
mean value analysis algorithm for multi- class closed
system [11]. Now we assume R job classes and K = (Kଵ, Kଶ,…KR)

The computation of performance measures is as follows

1. π୧ሺkሻ is the marginal probability that there are

exactly S୧ ൌ k jobs at node I is given by: π୧ሺkሻ ൌ Fሺ୩ሻGሺKሻ GNሺ୧ሻሺK െ kሻ (13)

Where

F୧ሺkሻ ൌ
۔ۖەۖ
!k୧ۓ ଵஒሺ୩ሻ ቀ ଵµቁ୩ ∏ ଵ୩౨! e୧୰୩౨ , Type െ 1R୰ୀଵk୧! ∏ ଵ୩౨! ቀୣ౨µ౨ቁ୩౨R୰ୀଵ , Type െ 2,4∏ ଵ୩౨! ቀୣ౨µ౨ቁ୩౨R୰ୀଵ , Type െ 5 (14)

, GNሺ୧ሻ can be interpreted as the normalization constant of
the network with k jobs and node i removed from the
network.
2. Calculate the throughput of node i in the load-
dependent or load- independent case is given by the
formula: λሺKሻ ൌ GሺKିଵሻGሺKሻ (15) and λ୧ሺKሻ ൌ e୧ GሺKିଵሻGሺKሻ (17)
3. Calculate the workload of the node i , ρ୧ ൌ ୫µ ൌ ୣ୫µ GሺKିଵሻGሺKሻ (18)
4 Calculate the mean number of jobs K୧ ൌ ∑ ሺୣµሻ୩K୩ୀଵ GሺKି୩ሻୣGሺKିଵሻ (19)
5 Calculate the mean response time if jobs at node I can
be determined with the help of Little’s theorem

W୧ ൌ K ൌ ∑ ሺୣµሻ୩K୩ୀଵ GሺKି୩ሻୣGሺKିଵሻ (20)
 6 Compare W୧ with W୧’ stored in service QoS
Descriptor (it depends on which one is more important
for users) to check W୯୧ െ W୧’ e (21)

 7 If the inequation in step 10 is true, than clear the
counter C, which counts the number of successive
failed periods. Then repeat to step 1.

 8 If the inequation in step 10 is false, increase C by

1, and compare C with n, if C is not greater than n,
repeat to step 1; otherwise, we consider that the
service can not satisfy our performance requirement.
As a result, we successfully detect a fault by our
criteria.

4. Case Study

 In the first case, supposed we have an SOA –based
application, and we invoke web services independently,
we suppose this service is of M/G/6/6

 Table 1: The numbers of various values of ૃܑ

and ૄܑ,ܒ
We calculate λ λ ൌ 1n λ୧ ൌ 1.98 ୬

୧ୀଵ

Then , calculate µ : µ ൌ 1Sn µ୧,୨ ൌ 0.99S
୨ୀଵ

୬
୧ୀଵ

Then occupation rate ρ is :
 ρ ൌ Sµ = 1/3

 Bሺc, ρሻ ൌ p ൌ 0.011

 Then λୣ is λୣ ൌ λሺ1 െ P୩ሻ = 1.76
 Then L is

 L ൌ ∑ jp୨ ൌ ୩୨ୀ 0.231
Since S and k are all 6, so L୯ ൌ 0. The W is W ൌ 1λୣ L ൌ 0.13

248

 Now, we can compare W with W’ stored in service
QoS Descriptor, and determine whether the service is
failed to satisfy the performance requirements.

In the second case, supposed we composite
services in the SOA applications on ESB, we used the
above performance model to analyze the following
closed queuing network with N =3 nodes and K = 3
jobs. The first node has ml = 2 and the second node
has m2 = 3 identical service stations. For the third
node we have m3 = 1. The service time at each node is
exponentially distributed with respective rates: µଵ= 0.8secିଵ, µଶ= 0.6secିଵ, µଷ= 0.4secିଵ

Figure2:A closed queuing networks

 Thus The marginal probabilities for the single
server node 3 can be computed : πଷሺ0ሻ ൌ ൬eଷµଷ൰ 1Gሺ3ሻ ൭Gሺ3ሻ െ eଷµଷ Gሺ2ሻ൱ ൌ 0.528

πଷሺ0ሻ ൌ ൬eଷµଷ൰ଵ 1Gሺ3ሻ ൭Gሺ2ሻ െ eଷµଷ Gሺ1ሻ൱ ൌ 0.312

πଷሺ0ሻ ൌ ൬eଷµଷ൰ଶ 1Gሺ3ሻ ൭Gሺ1ሻ െ eଷµଷ Gሺ0ሻ൱ ൌ 0.132

πଷሺ0ሻ ൌ ൬eଷµଷ൰ଷ 1Gሺ3ሻ ൬Gሺ0ሻ െ eଷµଷ כ 0൰ ൌ 0.028

And also, we compute the marginal probabilities for the
node 1 and 2 πଵሺ0ሻ ൌ FభሺሻGሺଷሻ GNଵ ሺ3ሻ ൌ 0.211, πଵሺ0ሻ ൌ Fଵሺ1ሻGሺ3ሻ GNଵ ሺ2ሻ ൌ 0.398 πଵሺ0ሻ ൌ Fଵሺ2ሻGሺ3ሻ GNଵ ሺ1ሻ ൌ 0.282 πଵሺ0ሻ ൌ Fଵሺ3ሻGሺ3ሻ GNଵ ሺ0ሻ ൌ 0.109

and
 πଶሺ0ሻ ൌ 0.295, πଶሺ1ሻ ൌ 0.412
 πଶሺ2ሻ ൌ 0.242 πଶሺ3ሻ ൌ 0.051

Then throughput can be computed
 λଵ ൌ eଵ GሺଶሻGሺଷሻ ൌ 0.945, λଶ ൌ eଶ GሺଶሻGሺଷሻ ൌ 0.630

λଷ ൌ eଷ Gሺ2ሻGሺ3ሻ ൌ 0.189

The utilization are given by the performance model
above,
 ρଵ ൌ భ୫భµభ ൌ 0.590, ρଶ ൌ మ୫మµమ ൌ 0.350 ρଷ ൌ λଷµଷ ൌ 0.473

The mean number of jobs at the multiserver nodes is Kଵ ൌ πଵሺ1ሻ 2πଵሺ2ሻ 3πଵሺ3ሻ ൌ 1.290 Kଶ ൌ πଶሺ1ሻ 2πଶሺ2ሻ 3πଶሺ3ሻ ൌ 1.050

And for the single server node3 , Kଷ ൌ ൬eଷµଷ൰ Gሺ2ሻGሺ3ሻ ൬eଷµଷ൰ଶ Gሺ1ሻGሺ3ሻ ൬eଷµଷ൰ଷ Gሺ0ሻGሺ3ሻ ൌ 0.660

For the mean response time, Wଵ ൌ Kభభ ൌ 1.366, Wଶ ൌ Kమమ ൌ 1.667, Wଷ ൌ Kమమ ൌ 3.498,
Finally, we compute the mean response time of the
three nodes in the queuing networks, we separately
compare the W୧ and W୧’

5. Conclusions

In this paper, we put forward a fault detection

mechanism, which is based on the queuing theory, to
detect the services that fail to satisfy performance
requirements. We improve the mechanism of
performance measuring, and we can prove the
correctness of this mechanism, we lack of experiment
data yet, because it is difficult to establish a simulation
application to validate our mechanism. As we have
mentioned in [6], the existing frameworks or platforms
have no capability of fault tolerance, some of them even
have no open APIs provided for us to extend them. With
the emergence of open source SOA platforms, we can
choose a proper one to extend it to have the capability
of fault detection, and establish a practical SOA-based
application to validate the correctness of this
mechanism in the future.
6 References

[1] W.T. Tsai, Chun Fan, Yinong Chen, R. Paul, and
Jen-Yao Chung, “Architecture classification for SOA-
based applications”, Proc. of the Ninth IEEE
International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC
2006), April, 2006, pp. 8-15

249

 [2] Yan Liu, Ian Gorton, Liming Zhu, “Performance
Prediction of Service-Oriented Applications based on
an Enterprise Service Bus”, 31st Annual International
Computer Software and Applications Conference
(COMPSAC 2007)
[3]Colin White,”What Do SOA and ESB mean in
Business Intelligence”, available at http://www.b-eye-
network.com/view/3018
[4]G. Spanoudakis, A. Zisman, and A. Kozlenkov, “A
service discovery framework for service centric
systems”, Proc. of 2005 IEEE International Conference
on Services Computing (SCC 2005), July 2005, pp. 251
– 259
[5] Davis, D. and Parashar, “M. Latency Performance
of SOAP Implementations”. In Proceedings of the IEEE
Cluster Computing and the GRID 2002 (CCGRID'02),
Berlin, Germany, IEEE, 2002
[6] HAO-PENG CHEN, CHENG ZHANG,” A Fault
Detection Mechanism for Service-Oriented
Architecture Based on Queueing Theory”, 7th IEEE
International Conference on Computer and Information
Technology (CIT 2007)
[7] Carolyn McGregor, Josef Schiefer, "A Framework
for
Analyzing and Measuring Business Performance with
Web Services," cec, p. 405, 2003 IEEE International
Conference on E-Commerce Technology (CEC'03),
2003.
[8 Almeida, V. A. and Menascé, D. A. 2002. Capacity
Planning: An Essential Tool for Managing Web
Services. IT Professional 4, 4 (Jul. 2002), 33-38.
DOI= http://dx.doi.org/10.1109/MITP.2002.1046642]
[9] Ted Neward, Effective Enterprise Java, Addison
Wesley Professional, Boston, August 26, 2004
[10] AndreasWillig, “A Short Introduction to Queueing
Theory”, July 21, 1999, available at: www.tkn.tu-
berlin.de/curricula/ws0203/ue-kn/qt.pdf
[11] Menascé, D. A and Almeida, V. A., Capacity
Planning for Web Services: metrics, models and
methods, Prentice Hall, 2001, ISBN 0-13-065903-7.

250

