

1This paper is supported by the National High-Tech Research Development Program of China (863 program) under Grant No. 2007AA01Z139.

QMC: A Service Registry Extension Providing QoS Support1
Siming Xiong, Haopeng Chen

School of Software, Shanghai Jiao Tong University, P.R.China, 200240
simingxiong@gmail.com, chen-hp@sjtu.edu.cn

Abstract

With the rapidly growing number of Web services

throughout the Internet, the limitations of centralized
architecture and the neglect of QoS support have severely
restricted service registries’ ability to publish and discover
Web services. We propose a P2P service registry extension
named QMC to solve these problems. QMC provides
comprehensive support on QoS such as storing QoS
feedbacks, managing QoS data, handling QoS requests.
Moreover QMC is a system with high scalability and
load-balance.

1. Introduction

Service Registry plays an important role in Web services
(WS) discovery. Without it, service providers have to pay
more prices to advertise their services while service
consumer cannot discovery a required service in an efficient
manner.

In recent years, several UDDI Business Registries (UBR)
established by IBM, SAP, Microsoft have emerged.
However, none of them are pervasively used according to
the survey in [1].The main reason is that they only
considered functional criteria. Unfortunately, there are now
thousands of functional- equivalent Web services
disseminated throughout the Internet and it will be a
time-consuming task for service consumers to find a
satisfying WS. As a result, a certain subset of all possible
non-functional properties that may affect the quality of the
service collectively referred to as QoS has been taken into
account. By doing so, QoS has substantial impacts on users'
expectations of services and can be efficient as a
discriminating factor among web services providing
equivalent functionalities.

Moreover, UBRs are based on centralized architecture.
Although centralized registries can provide effective
methods for the discovery of Web services, they suffer from
problems associated with having centralized systems such
as a single point of failure, and bottlenecks. In response to
this problem, the majority of researchers suggest a P2P
solution. A P2P overlay network provides an infrastructure
for routing and data location in a decentralized,
self-organized environment in which each peer acts not
only as a node providing routing and data location service,
but also as a server providing service access. It not only
avoids the drawbacks of centralized registry, but also allow
service registry to share WS information with high
scalability. Recently proposed P2P protocols include
CAN[2], Pastry[3], Chord[4]. All of them support looking
up data by a unique key.

Based on the above, we propose a system called QMC
which extends the existing service registries to support
queries based on QoS requirements. Besides, QMC takes
the advantages of P2P systems. The rest of this paper is
organized as follows: Section 2 surveys the related work.
Section 3 makes some assumptions and illustrates our
changes to the SOA model. Section 4 presents the internal
architecture of our system and Section 5 explains the
process of QoS data distribution and QoS query by
exemplification. Section 6 draws the conclusions and
describes our future work.

2. Related Work

Although QoS plays an important role in Web service
discovery, a widely-accepted standard specifying Qos
metrics and measurement has not existed yet. Many
researchers have proposed their own Qos definitions
[5][6][7]. These Differences in QoS concepts and

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.54

145

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.54

145

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.54

145

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.54

145

2009 International Conference on New Trends in Information and Service Science

978-0-7695-3687-3/09 $25.00 © 2009 IEEE

DOI 10.1109/NISS.2009.54

145

measurement may result in confusion and misleading in the
process of Web service discovery. Therefore, another more
acceptable way is to define a rich QoS description model.
Many different ontologies have been proposed such as
OWL-Q [8], DAML-QoS [9], QoSOnt [10], WSMO-QoS
[11]. These ontologies explore a way to define different
QoS definitions in a QoS description model.

Regarding the P2P service registry, the majority of
researchers focus on functional criteria. In [12], the author
proposes a web service index system based on Chord. In
this system, all data elements are described using a
sequence of keywords. These keywords form a
multidimensional keyword space. The author uses a
Hilbert-Space Filling Curve to map the n-dimensional
keyword space to a one-dimensional indexing space and
hash it onto the underlying node in the Chord circle.
Similarly, [13] proposes A scalable Web Service discovery
Architecture based on P2P. This system converts the service
description files (WSDL files) into a node-value tree and
generates a hash value from the tree nodes. After that, the
service description will be inserted into the Peer-to-Peer
overlay network. Nevertheless, another approach attempts
to provide QoS support for the service registry. [14]
proposes a P2P semantic service discovery architecture
with QoS support. Unfortunately, it only provides a QoS
ranking algorithm without any reference to QoS queries
(e.g. find all the services with response time less than 500
ms).

In summary, all the above P2P systems either do not
consider QoS or provide insufficient QoS support. So in
this paper, we will discuss how our QMC system provides
an enhanced QoS query capability.

3. Assumptions and SOA Model

In order to focus on the process of discovering WS
through QoS query, we make the following assumptions:

1. There has already existed a service registry for QMC
to extend. So we do not take functional criteria into
consideration and focus on QoS only.

2. Every service consumers and service providers have a

unique identifier (UID).
3. The same WS in the service registry and in QMC have

the same service identifier (SID).
4. All the QoS metric should be measurable in case of a

subjective evaluation of QoS.
5. Both service consumers and service providers monitor

the status of the services and send credible QoS feedback to
QMC. So we do not consider malicious reporting and
collusive cheating of service consumers and service
providers. This assumption can easily be removed. Some
colleagues of mine are working on it and have made some
progress.

Obviously, all the above assumptions are reasonable.
With these assumptions, we can focus on the procedure of
QoS query.

Figure 1. SOA Model

Figure1 illustrates our SOA model. We make some
changes to original SOA model. All the solid lines in this
figure represent the operations which have already been
implemented in the original SOA model, while all the
dashed lines stand for the operations proposed by our model.
A typical process of our model is as follows: various service
providers publish their service descriptions onto the service
registry (1), and service consumers query for services with
certain functional and QoS requirements (2). The service
registry handles the functional part of the query and builds
QoS request combining both the functional query results
and QoS requirements. QMC receives the QoS request (3)
and finds the required services. The results are returned to
the service consumer who may invoke one of the found
services (4).The service consumer monitors the status of the
services and sends QoS feedbacks to QMC(5). Additionally,

146146146146146

service providers can also express QoS feedbacks which
they could obtain from the service to QMC (6).

4. Architecture

To fulfill the functions of QMC as mentioned in Section 3,
each QMC peer in the system should be responsible for
storing QoS feedbacks, managing QoS data, handling QoS
request.

Figure 2. The internal architecture of a QMC peer

Figure 2 shows the internal architecture of each QMC
peer. It is composed of 6 components: QoS Feedback
Storage, QoS Metric Model, QoS Data Manager, QoS Index
Tree, QoS Query Handler, Peer Communicator.

4.1 QoS Metric Model

As we mentioned in Section 2, a widely-accepted
standard specifying Qos metrics and measurement has not
existed yet. Therefore, it is essential for us to adopt a
formal QoS ontology to model different QoS metrics.

Compared with other QoS ontologies we refered to in
Section 2, OWL-Q provides a more comprehensive
description of QoS metrics. The Metric Facet of OWL-Q
describes all the appropriate classes and properties used for
defining QoS metrics. A QoSMetric is separated into static
and dynamic metrics. A StaticQoSMetric is computed only
once to produce a value while a DynamicQoSMetric is
computed repeatedly according to a Schedule to produce
values that change over time. A DynamicQoSMetric can
be further separated into a simple QoS metric measured by
a MeasurementDirective or a complex one derived from
other metrics with the help of an OMFunction.

Moreover, OWL-Q strongly supports us to describe
various unit types and values types for QoS metrics. The
Unit Facet describes the unit of a QoS metric. It also
contains concepts that are used to convert values of
equivalent metrics having different units. The
QoSValueType Facet describes the value types a QoS
metric can take, such as string, number, range, list,
boolean.

Based on the above considerations, we adopt OWL-Q as
our QoS metric model.

4.2 Peer Communicator

Peer Communicator is the QMC peer’s interface to other
peers. It is used for routing and locating QoS data. In this
work, we implement Peer Communicator by extending
Chord algorithm to organize the network of QMC peers
because of simplicity, provable correctness, and provable
performance of Chord compared with other P2P data
lookup protocols.

In the Chord overlay network, each peer has a unique
identifier (PID) ranging from 0 to 2m−1. These identifiers
are arranged as a circle modulo 2m, where each peer
maintains information about its successor and predecessor
on the circle. And each data element gets an identifier (HID)
from the identifier space (0 to 2m−1) generated by a
consistent hash function. Then it is mapped to the first peer
whose PID is equal to or follows the HID in the identifier
space.

For the sake of routing and locating QoS data, the Chord
algorithm should be extended to manipulate QoS data in
the QoS Data Manager by invoking its APIs, interact with
QoS Query Handler to fulfill QoS request. We will discuss
how to extend the Chord algorithm in detail in Section 5.

4.3 QoS Feedback Storage

QoS Feedback Storage is the place where we store the
QoS feedbacks. We assume that the feedback in the storage
should be a 3-dimensional vector FB in which UID is the
identifier of the user who provides the feedback, QD is a
data structure containing the real-time QoS data about the
identifier of the service, the QoS metric we measured and

QMC Peer 1

Update

QSE

Compute
QoS Data

Find

QS

Index
Info

Query QoS
Data

QoS Feedback
Storage

QoS Metric
Model

QoS Data
Manager

QoS Query
Handler

Peer
Communicator

Service
Provider

Service
Consumer

QoS Index
Tree

QoS
Feedback

QR
Result

QS
Result

Service
Registry

QMC Peer 2
QSE

Result

QR

147147147147147

its value, t is the time when the feedback is created.
 FB ൌ ,UIDۃ QD, t(1) ۄ
Each FB has a HID by hashing SID in QD and is routed

to a QMC peer by Peer Communicator. After receiving the
FB, the peer will store it in the QoS Feedback Storage.
These feedbacks are the foundation of computing statistical
QoS data.

4.4 QoS Index Tree

Each QoS metric described in the metric model has an
index tree. Each index tree divides the continuous value of
QoS data into different ranges so that each peer only has to
manage a small part of the QoS data. We make small
changes to B+ Tree to implement it. Each leaf node in this
tree represents a range between the keys in the internal node.
It stores a data structure containing a randomly generated
HID which decides the peer to store the QoS Data in the
range and an integer which is the sum of services whose
QoS Data is in the range. QoS Index Tree allows range
queries (e.g. find all such that vଵ ൑ i ൑ vଶ) and returns
all the HID in the leaf nodes whose range overlaps the query
range.

Obviously, any change made to the QoS Data will
update an index tree. However, we hope that each peer
equally store only a small fraction of the QoS data.
Therefore we need to adjust the index tree to have as many
leaf nodes as possible while each leaf node have almost the
same sum of services. In order to achieve this, we set a
threshold to the sum of services each leaf node has. When
the sum is greater than the threshold, the leaf node will
split into two leaf nodes. By doing so, we can make sure
each peer have almost the same load. We will discuss how
to decide the threshold in Section 5.

Furthermore, we record every change we make to the
index tree and spread the change through the Chord circle
so as to make sure each peer has the same index tree.

4.5 QoS Data Manager

QoS Data Manager is responsible for manipulating and
querying QoS Data. It statistics QoS Data from a large
amount of QoS feedbacks according to the Schedule

defined in the QoS Metric, distributes QoS Data to a
specific QMC peer, and handles query from QoS Query
Handler.

Each QoS Data is a 4-dimensional vector QD in which
SID is the identifier of the service, QM is a QoS metric
described by our metric model, v is the value we derived by
statistical method, t is the time when the data is updated.

 QD ൌ ,SIDۃ QM, v, t(2) ۄ
After a new QoS Data is computed, the QoS Data

Manager has to distribute the data to a peer in accordance
with the Chord protocol. At first, it updates the index tree
according to the data. Then it invokes the API in the Peer
Communicator to finish the job.

Furthermore, QoS Data Manager needs to check the
QoS Data periodically in case that the data is outdated or
placed at the wrong peer as a result of the changes made to
the Chord network or the index tree.

4.6 QoS Query Handler

Before we explain the QoS Query Handler, we define the
following concepts for the sake of convenience:

Definition 1: QoS SelectElement (QSE) is a constraint on
a single QoS metric for example, response time<1 second.

Definition 2: QoS Request (QR) is a set of unprocessed
constraints on some QoS metric put forward by service
consumer. It is a logical expression made up of QSEs for
instance, response time<1 second and availability>90%.

Definition 3: QoS Selection (QS) is a set of constraints
on some QoS metric after the QoS Request have been
pre-processed. For example, {response time<1 second,
availability>90%}. Furthermore, it is a set of QSEs
grouped by the peer where the QSE will be redirected to.
As a result, QS also contains a PID indicating the peer.

QoS Query Handler is used to handle QR. When
received a QR from the service registry, the Query Handler
breaks down it into a set of QSEs, and passes it to the Peer
Communicator where each QSE will be processed. After
the result of QSE is returned, the QoS Query Handler
computes the final result according to the logic of the QR.

Be aware that if the QR from service registry contains a
list of SID which limits the possible services base on

148148148148148

functional requirement, the process still works. The only
thing need to do is to add this constraint to the QSEs.

5. QoS Data Distribution and QoS Query

QoS Data Distribution and QoS Query are the most
important functions of our system. QoS Data Distribution
routes QoS Data to a peer in accordance with the Chord
protocol. By doing so, the process of QoS Query can be
accelerated by using its corresponding algorithm to locate
QoS Data.

In order to implement these two functions, we mainly
need to extend the Chord algorithm. In the following part
of this section, we will give the pseudocode and the
corresponding examples. Before that, we give the
following preconditions:

Precondition 1: The result of the consistent hash
function range from 0 to 63. In other words, Both PID and
HID are in the identifier space from 0 to 63.

Precondition 2: There are three peers in the Chord circle
whose PID are 23, 44, 61.

Precondition 3: We only consider two QoS metrics,
availability (AV) and response time (RT) in this example.
We assume that the values of AV are integers range from 0
to 100, and its unit is % while the values of RT are integers
from 0 to infinite, and its unit is millisecond.

Precondition 4: Figure 3 illustrates the two QoS Index
Trees corresponding to AV, RT. We neglect the internal
nodes because it does not affect the result. We also assume
that the threshold is so big that the leaf node does not split
in this example.

Figure 4. AV,RT index tree

Precondition 5: After computation, the QoS data is as
follows:

Table 1. QoS Data

SID QM v SID QM v
S1 AV 38 S1 RT 1214
S2 AV 45 S2 RT 324
S3 AV 64 S3 RT 779
S4 AV 92 S4 RT 422

5.1 QoS Data Distribution
Figure 4 shows the pseudocode of QoS Data

Distribution. It is invoked by QoS Data Manager to route
the data to a specific peer.
QoSDataDistribution(QD data)
1 HID hid=index(data);
2 PID pid=findSuccessor(hid);
3 PeerCommunicator p=getPeerCommunicator(pid);
4 p.insert(data);
Figure 4. The pseudocode of QoS Data Distribution

Take QD=<S1, AV, 38> for example.At first, we search
the AV index tree according to the value 38 and acquire the
HID 50. Then we invoke the findSuccessor method
defined in original Chord algorithm and gain the PID 61.
After that, we get the Peer Communicator p corresponding
to the PID. Finally, we insert the data by invoking the
insert method which actually invoking the insert method in
the QoS Data Manager. The process is same to the other
QoS Data, and the final result is shown in Figure 5.

Figure 5. The final result of QoS Data Distribution

5.2 QoS Query
Figure 6 displays the pseudocode of QoSQuery which is

invoked by QoS Query Handler to get the results of QSEs.

 Response Time

ሺ0, 340ሿ

HID=36

ሺ340, 728ሿ

HID=21

ሺ728, 1061ሿ

HID=54

ሺ1061, 1366ሿ
HID=26

… … … … …

ሺ1366, +∞ሿ
HID=41

 Availability

ሺ0, 32ሿ
HID=15

ሺ32, 58ሿ

HID=50

ሺ58, 75ሿ
HID=33

ሺ75, 87ሿ

HID=16

ሺ87, 100ሿ
HID=7

… … … … …

PID=61

PID=23

PID=44

 SID QM v

S4 AV 92

S4 RT 422

 SID QM v

S3 AV 64

S1 RT 1214

S2 RT 324

 SID QM v

S1 AV 38

S2 AV 45

S3 RT 779

149149149149149

QoSQuery(List<QSE> qselist)
1 List<QSE> qselist=divide(request);
2 List<QS> qslist;
3 for each QSE qse in qslist
4 List<HID> hidlist = index(qse);
5 for each HID hid in hidlist
6 PID pid= find_successor(hid);
7 group(qslist,pid,qse);
8 List<QSResult> resultlist;
9 for each QS qs in qslist
10 PeerCommunicator p=getPeerCommunicator(qs.pid)
11 QSResult result = p.QoSQuery(qs);
12 resultlist.add(result);
13 return resultlist;

QoSQuery(QS selection)
1 for each QSE qse in selection
2 QSEResult result=qosDataManager.find(qse);
3 return all the result as one QSResult;

Figure 6. The pseudocode of QoSQuery

We will illustrate the QoS Query process base on the
distribution result in Figure 5. Take the QR {AV > 80%
and RT<500ms} for example. Before the QoSQuery
method is invoked, the QoS Query Handler splits the
request into a list of QSEs (QSE1: AV>80%; QSE2:
RT<500ms).Then the QoSQuery method obtains HIDs by
querying the QoS Index Tree according to the QSEs, and
calculates the corresponding PIDs (QSE1: HID=7, 16→
PID=23; QSE2: HID=36→PID=44, HID=21→PID=23).
After that, all the QSEs will be grouped into different QSs
so as to reduce the frequency of interaction with the other
peer (QS1 to PID=23: {AV>80%; RT<500ms}; QS2 to
PID=44: {RT<500ms}). Next, the QSs will be sent to the
target peers where they will be handled by the method
QoSQuery(QS selection) by the means of querying the QoS
Data Manager (QS1 Result:{S4; S4}; QS2 Result:{S2}).
In the end, all the result will be returned to the initial peer’s
QoS Query Handler and compute the final result of the QoS
Request(Final Result : S4).

As we discussed before, an index tree should have as

many leaf node as possible. We presume that s is the
number of services registered on the QMC, q is the
number of QoS metrics described in the QoS Metric
Model, ki (i=1...q) is the number of leaf nodes in an index
tree. So the average number of services each leaf node has
should be equal or less than the threshold.

 ୯ൈୱ∑ ୩౟౧౟సభ ൑ threshold (3)

On the other hand, if an index tree has more leaf nodes,
the QoSQuery will redirect QS to more peers which may
cause lower performance in query. We assume p is the
number of peers in the Chord circle, predirect is the number
of peers where QSs will be redirected to. Obviously, predirect
is equal or less than the number of HIDs in the index tree
which equals the number of leaf nodes. So the number of
leaf nodes should be equal or less than p.

 ∑ k୧ ൑ p୯୧ୀଵ (4)

Based on the above, threshold ൌ ୯ൈୱ୮ is a proper value

for both load-balance and performance.

6. Conclusion and Future Work

Most of the existing service registries either do not
consider QoS or provide insufficient QoS support.
Therefore, we propose a P2P service registry extension
named QMC to enhance their ability to manage and query
QoS in this paper. Similar to other P2P system, our system
scales well in terms of number of peers, search efficiency,
and number of users. Furthermore, OWL-Q gives users the
flexibility to model different QoS metrics.

Still, there is a lot of further work to be done. The
problem how to maintain consistent between different
copies of index tree in different peers has not been
addressed so far in this paper. Besides, many experiments
need to be performed to prove the efficiency, load-balance,
robustness of our system.

Reference

150150150150150

[1] Eyhab Al-Masri,Qusay H. Mahmoud. Investigating web

services on the world wide web. Apr 2008 Proceeding of

the 17th international conference on World Wide Web

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.

Shenker. A scalable content-addressable network. In

Proceedings of ACM SIGCOMM, pages. 161–172,San

Diego, CA, 2001,

[3] A. Rowstron and P. Druschel, Pastry: Scalable, distributed

object location and routing for largescale peer-to-peer

systems, in Proceedings of IFIP/ACM International

Conference on Distributed Systems Platforms(Middleware),

pages. 329–350.,Heidelberg, Germany, 2001.

[4] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.

Balakrishnan. Chord: A scalable peer-to-peer lookup

service for Internet applications. In Proceedings of ACM

SIGCOMM, pages. 149–160,San Diego, CA, 2001.

[5] Eyhab Al-Masri, Qusay H. Mahmoud. Toward

Quality-Driven Web Service Discovery. IT Professional

May 2008, vol.10, pp.24-28

[6] A. Mani and A. Nagarajan, Understanding Quality of

Service for Web Services,

http://www-106.ibm.com/developerworks/library/wsquality

.html, January 2002.

[7] Menasce D.A., “QoS Issues in Web Services”, IEEE

Internet Computing, November-December 2002, vol.6, pp.

72-75.

[8] K. Kritikos and D. Plexousakis. Semantic QoS Metric

Matching. In Proceedings of the European Conference on

Web Services (ECWS2006), IEEE Computer Society,

pp.265–274, 2006.

[9] C. Zhou, L. Chia, and B. Lee. DAML-QoS Ontology for

Web Services. In Proceedings of the International

Conference on Web Services (ICWS04), 2004.

[10] G. Dobson, R. Lock, and I. Sommerville. QoSOnt: a QoS

Ontology for Service-Centric Systems. In Proceedings of

the 2005 Euromicro SEAA, 2005.

[11] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A

QoS-Aware Selection Model for Semantic Web Services. In

Proceedings of the 4th International Conference Service

Oriented Computing – ICSOC 2006, LNCS, Springer

Verlag, Volume 4294, pp. 390–401, 2006.

[12] CRISTINA SCHMIDT,MANISH PARASHARA.A

Peer-to-Peer Approach to Web Service Discovery .World

Wide Web: Internet and Web Information Systems, 7,

211–229, 2004.

[13] Yin Li , Futai Zou, Zengde Wu, and Fanyuan Ma.PWSD: A

Scalable Web Service Discovery Architecture Based on

Peer-to-Peer Overlay Network. APWeb 2004, LNCS 3007,

pp. 291–300, 2004.

[14] Haihua Li; Xiaoyong Du; Xuan Tian: Towards P2P-Based

Semantic Web Service Discovery with QoS Support.In

Semantics, Knowledge and Grid, Third International

Conference on 29-31 Oct. 2007 pp 358 - 361

151151151151151

