
An Objective and Automatic Feedback Model for QoS
Evaluation

Cheng Zhou
School of Software

Shanghai Jiao Tong University
Shanghai P.R.China

86-13764475246

zhoucheng32@gmail.com

Haopeng Chen
School of Software

Shanghai Jiao Tong University
Shanghai P.R.China
86- 021-34204124

chen-hp@sjtu.edu.cn

ABSTRACT
Quality of Service (QoS) is an important factor during service
composition and recommendation. Since static QoS data cannot
reflect the real-time performance of Web Service (WS), a
mechanism is needed to collect the dynamic QoS data. Also, QoS
query result is determined by the QoS data stored by service
registry. Consequently, it is also necessary to use an efficient and
accurate feedback method to calculate and send those dynamic
QoS data to the service registry.

In this paper, we propose a QoS feedback model based on
objective QoS metrics using some simple statistical theories and a
dynamic queue as a data pool to cache all runtime status.
Moreover, error determination and sampling feedback have been
taken into consideration so that service provider assigns less
hardware resource and avoids disturbing feedback result from
unfriendly exception. By carrying out experiments, it
demonstrates that this feedback model evaluates the WS
performance better than other common methods. This model
provides QoS metrics that are easy to rank and sensitive to the
status change.

Keywords
QoS Feedback, Web Service discover

1. INTRODUCTION
One key issue in the web service discovery and composition area
is to estimate each service of all visible providers’ nodes, whether
their services meet the functional requirements of consumers.
Equally important, consumers also would like to know which best
meet their non-functional requirement, among these optional
providers. Quality of services (QoS) is the majority part of these
non-functional requirements, i.e., performance, reliability,
availability, security, transaction, etc.

"Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ICIS 2009, November 24-26, 2009 Seoul, Korea
Copyright © 2009 ACM 978-1-60558-710-3/09/11... $10.00"

During the first selection, searching in service registry by
semantic technique returns lots of choices. QoS-based selection
ranks these services and makes recommendation according to
their QoS attributes. Service registry collects these attributes from
feedback of both providers and consumers. Consequently,
feedbacks become determinant of ranking.

In this paper we present a model for improving feedback
efficiency and accuracy. Before sending out feedbacks from
original data, they are processed. So our model guarantee these
feedbacks with distortions and the disturb elements are
eliminated. That means single feedback message stands for a
statistical result of long term or short term runtime status
collection. It discriminates between impulsive noises and normal
error behaviors. And also cheat in invocations is detected and
excluded from calculation resource, in order to improve their
performance expression.

2. RELATED WORK
Feedback mechanism involves three aspects: QoS metrics
definition, data collection and calculation.

2.1 A. QoS metrics Classic Definition
A wide spectrum of metrics which attribute to quality of service
has been put forth by the research community with often varying
interpretations. Presented here is some metrics with classic
definitions where applicable. We primary focus on these metrics
listed below in this paper.

Throughput: Throughput is the number of web service requests
served in a given period of time [1]. The response time of a
system increases as the throughput increases and an important
policy decision is to make a compromise between maximizing the
throughput and minimizing the response time [2].

Response time: The amount of time between sending the request
and receiving a response [2] or the guaranteed average time
required to complete a service request [1]. Also referred to as
execution duration, it is computed using the processing time and
the transmission time.

2.2 A registry set up to provide QoS based
search
Most of the existing service registries either do not consider QoS
or provide insufficient QoS support. Nevertheless, we have
proposed a P2P service registry extension named QMC to

This paper is supported by the National High-Tech Research
Development Program of China (863 program) under Grant No.
2007AA01Z139. 1284

enhance their ability to manage and query QoS. Similar to other
P2P system, this system scales well in terms of number of peers,
search efficiency, and number of users. We were leveraging
OWL-Q[11] to model different QoS metrics flexibility. Hence, we
need a feedback source to support this type of service registry.

2.3 Real-time QoS Data Collection
The QoS data are collected from both the provider-side and the
consumer-side. Different operating systems, programming
languages and transfer protocols may affect the way of collecting
QoS data. Therefore, our previous research has presented three
ways of implementing a QoS interceptor, which can be used
according to different environments. The first one involves AOP
method [8]: setting an aspect to record the performance of each
invocation before and after message-sending-out action executed.
The second one relates to building an http package filter to
reassemble the incoming request messages and outgoing response
messages. The third one is based on a proxy settled between client
and service, monitoring all requests and response going through.

2.4 Other QoS feedback mechanism
However, previous research has failed to consider about
precomputing before feedback. Most statistical jobs are executed
when original data received in service registry [6]. It brings more
computing pressure and takes up many other hardware resources
of service registry. Meanwhile, it is not so easy for designers to
determine how many history records should be recorded in
registry. As our implementation always provides transient
performance status, evaluation depends on average performance
value of several invocations recently. On one hand, if we use a
fixed formula to handle this, it works reasonable only when
invocation frequency, average message size, network lendcy and
etc are all the same for different service provider. It sounds a little
unpractical. On the other hand, if we never add historic data while
calculation, evaluation of service fluctuates according to the
feedback up-to-date. Unstable behave makes selection and sorting
more difficult and incorrect.

3. QOS METRICS CALCULATION
In this paper we only take some performance attributes to
introduce the feedback model.
Metrics for performance are Service Response Time (SRT) and
Throughput of a Service (TP (SRV)). SRT is an elapsed time
between the end of a request to a service and the beginning of the
service’s response. Here, the service indicates both the atomic and
composite service.

SRT = Time when Service Consumer finishes sending request to
the service – Time when Service Consumer starts receiving
response from the service[3] (1)

SRT includes transmission time, XML parsing time, and actual
processing time. The range of SRT is SRT >0, where the lower
value indicates higher response time. TP (SRV) represents the
number of requests served at a given period of time.

TP (SRV) = Number of Completed Service Requests / Unit of
Time [3] (2)

The numerator is the number of successfully completed requests
to a service exposed by WSDL. The service can indicate both the
atomic and composite service. The denominator is a unit of time
such as second, minute, or hour. The value range of the metric is
TP (SRV) > 0. Maximum number of requests that can be
processed indicates how many users can be processed
concurrently in a service.

4. DYNAMIC FEEDBACK QUEUE
4.1 Queue Construction
After we collected enough information about runtime status, it’s
time to send them to services registries. Neither, the feedback
frequency is high or low will increase the load or reduce the
nicety of query result in registries. On the one hand, if registry
records every invoking by feedback unit, it takes much resource to
compute statistical result from original data. On the other hand, if
remote client only communicates with registry monthly or weekly,
the latest situation can’t reflect the query result at once. Hence, we
design a dynamic feedback queue to path this problem.

Figure 1. Queue structure

Qi represents the element in the queue. Lqueue represents the length
of the queue.

Feedback frequency depends on the number of invocation in unit
time. Also, there is a maximum distance between two feedbacks,
if certain service is rarely invoked recently. We suppose a data
structure to store all QoS elements of each invocation. It’s a
circular queue or ring. A ring showing, conceptually, a circular
buffer. This visually shows that the buffer has no real end and it
can loop around the buffer [9]. All elements in the buffer queue
will affect the performance of the service. In this way, single
feedback is a statistical result based on all data in queue.
Consequently, the feedback frequency is to determine like this:

invoke
feedback

queue

ff k
l

=
 (3)

ffeedback represents the frequency of feedback to service registry.
finvoke represents the frequency of the web service is invoked. lqueue

1285

represents the length of local QoS queue. k represents a constant
for regulating.

There are two probabilities that the feedback of single invoking is
removed from the queue. The first one is this element meets the
end of the queue, and is removed because of the incoming of new
element. The other condition is, this element has stayed in the
queue for long enough to lose statistical value. For example, let’s
consider an example one service hasn’t been invoked for weeks
because of network error or others. Some elements in the queue
are recorded weeks ago. They have no relationship with
performance behaviors of the service at present. They all need to
be removed. Service registry wants feedback represent how the
service works now. Outdated elements may stand for historical
status, they are including in feedback before, but not this time. So
we need a counter, and give all elements in the queue a count
value. We suppose the initial count value is set to “n”. Count
value of all elements will be decreased by 1, in every “T” minutes.
Each element in queue will be removed no matter it is in the end
of queue or not if its count value become zero.

4.2 Feedback Result Calculation
Now we have a queue full of runtime status data. The following
step is getting a value of single QoS metric.
Firstly, we need to eliminate noises in the queue. When we invoke
the service first time, the local DNS cache happens to miss the
destination address. While the request or response message
transferring in the network, some IO exception occur in Tcp
package. They all bring some extraordinary element into queue
(extraordinary element means these performances will not stand
for the real status of service, they are considered to be noises).
The final evaluation value will not including these noises, because
they don’t stand for the real performance status of the service
provider. At the same time, we have to different noises from bad
performance; make sure the queue is sensitive to QoS changes.

We suppose Dk~k+1 stands for distance of Ek and Ek-1 in certain
QoS dimensions. DN Stands for the longest distance between
normal elements. If both Dk~k+1 and Dk-1~k bigger then DN, we
consider Ek is noisy node.

Otherwise, some other element exists nearby this element. it
probably stands for bad performance.

Figure 2. Performance Example

DA~F > DN and DA~G >DN, so element A is noise.

DB~C< DN, DC~D< DN, DD~E< DN, so elements B, C, D, E are
effective value.

Second, using following formula, we can get feedback values.

1

1

n

i i
i

response n

i
i

l Q
Q

l

=

=

=
∑

∑
 (4)

Take response time for example, every element’s life value will be
added together to make a weighted average. That means element
stays in the queue longer, the less effective it makes to the
evaluation result.

4.3 Sampling Method
The model introduced before, goes through every invocation of
the service. When the server is quite busy, it brings process load
and affects the normal function of itself. Consequently, we use
sampling approach to solve it. In this case, not all the invocation
performance is added into feedback queue.

The sampling theorem describes two processes in signal
processing [4]: a sampling process, in which a continuous time
signal is converted to a discrete time signal, and a reconstruction
process, in which the original continuous signal is recovered from
the discrete time signal. The continuous signal varies over time
(or space in a digitized image, or another independent variable in
some other application) and the sampling process is performed by
measuring the continuous signal's value every T units of time (or
space) [4], which is called the sampling interval. In practice, for
signals that are a function of time, the sampling interval is
typically quite small, on the order of milliseconds, microseconds,
or less. This results in a sequence of numbers, called samples, to
represent the original signal. Each sample value is associated with
the instant in time when it was measured.

Figure 3. Discrete-time sampling

The original sequence Q[n] at integer multiples of the sampling
periods N and is zero at the intermediate samples [5], that is,

1286

[] int
[]

0p

Q n if n an eger multiple of N
Q n

otherwise
=


 (5)

The effect in the frequency domain of discrete-time sampling is
seen by using the modulation property[5].

[] [] [] [] []p
k

Q n Q n p n Q kN n kNδ
+∞

=−∞

= = −∑
 (6)

We have in the frequency domain that

2

1() () ()
2pQ P Q d

π

θ θ θ
π

Ω = Ω−∫
 (7)

The Fourier transform of the sampling sequence p[n] is[5]

2() ()s
k

p k
N
π δ

+∞

=−∞

Ω = Ω− Ω∑
 (8)

Where Ωs, the sampling frequency, is 2π/N. Combining 2
formulas before, we have

1

0

1() ()
N

p s
k

Q Q k
N

−

=

Ω = Ω− Ω∑
 (9)

Now, we can get original performance metrics recovered from the
sampling signal.

It’s still a problem: what determines the sampling frequency. We
can’t tell 1/2 of invocation frequency batter than its 1/4. The
Nyquist–Shannon sampling theorem states that perfect
reconstruction of a signal is possible when the sampling frequency
is greater than twice the maximum frequency of the signal being
sampled,[4] or equivalently, when the Nyquist frequency (half the
sample rate) exceeds the highest frequency of the signal being
sampled. If lower sampling rates are used, the original signal's
information may not be completely recoverable from the sampled
signal.

We suppose the performance status Q(t) follows linear time-
invariant system (LTI) theory. Linearity means that the
relationship between the input and the output of the system is a
linear map [4]: If input x1(t), produces response y1(t), and input
x2(t), produces response y2(t), then the scaled and summed input
a1 x1(t)+ a2 x2(t). Time invariance [4] means that whether we
apply an input to the system now or T seconds from now, the
output will be identical except for a time delay of the T seconds.
That is, if the output due to input x(t) is y(t), then the output due
to input x(t − T) is y(t − T). The reason why the performance
status is time-invariant is quite clear. These performance statuses
only depend on the network traffic situation and how many
request the server received. Both of two impact factor is
independent of time. We suppose service performance is linear
because concurrent operation in computer over limited numbers
of CPU is serial in fact. Consequently, if response one request
needs T milliseconds, two responses cost 2T milliseconds
probably in my treatment.

2

1() ()
2

j j nQ n Q e e dω ω

π

ω
π

= ∫
 (10)

() []j j n

n
Q e Q n eω ω

+∞
−

=−∞

= ∑
 (11)

[]Q n is a sequence of all frequency elements. ()jQ e ω is the
frequency spectrum of Q. It seems sampling frequency has
nothing to do with invocation frequency. According to Nyquist–
Shannon sampling theorem[5], the sufficient condition for exact
reconstruct ability from samples at a uniform sampling rate sf

(in samples per unit time) is: 2sf B≥ , 2Bis called the Nyquist
rate[5].B is the bandwidth, the biggest frequency of all base
signals. / 2sf is called the Nyquist frequency and is a property
of this sampling system.

 Here is an example:

0 0
0 0

1 1 2[] cos ,
2 2 5

j n j nQ n n e eω ωω ω π−= = + =
 (12)

2 2() () (),
5 5

jQ e ω π ππδ ω πδ ω π ω π= − + + − ≤ <

 (13)

We suppose the feedback attributes express like this:

Figure 4. Hypothetical Performance Example

The sampling frequency needs to be more than ‘2/5’.

5. CASE EXAMPLE
In this section we apply the feedback model to process a list of
runtime performance data, comparing with two different methods.
All ways introduced here works on QoS data after sampling. It
shows practicability and usefulness of the model introduced in
this paper. We suppose a web service processing request represent
as Figure 5. And we invoke the same operation of this service
with a random delay.

Figure 5 shows original performance data without any process.
Each point in the diagram stands for a feedback value. We take
response time for example. Most response time is near 200
milliseconds.

1287

Figure 5. Runtime QoS value

Figure 6 shows original performance data have been processed by
certain sampling frequency. The fourth point is considered to be
invocation noise. And three big response time elements follow
after.

Figure 6. Runtime QoS value after sampling

Firstly, we using a method to feedback every invocation
performance. Here we get result from service registry as Figure
7.Sampling helps to reduce pressure by 1/ sf , the more service

performance smoothly, sf will be larger.

Figure 7. Feedback result of every invocation

Secondly, we add element together, and get their average value.

Figure 8. Average of all invocation

Finally, feedback using model introduced in this paper with
sampling. Length of queue is 5.We can see from Figure 9 noise
has nothing to do with the result. Change of original data effect
result smoothly. When the data element out of the queue, it never
effect any more.

Figure 9. Average value of invocation in queue

6. CONCLUSION AND FUTURE WORK
Most of the existing ways for evaluation WS are all based on WS
feedback [7]. Basically those feedbacks bring service registry lots
of statistical job, because they are all original data stand for
instantaneous status. In order to solve the problem, we proposed a
computing model based on objective QoS metrics using some
simple statistical theories and a dynamic queue used as a data pool
to store all runtime status. Moreover, sampling feedback has been
taken into consideration so that service provider with high
invocation frequency will assign less hardware resource.

This paper is supposed to be a research on automatic feedbacks
for service registry. The computing model proposed here needs
improvement as well as extension in order to support other
measurable objective QoS attributes and subjective attributes,
such as user satisfaction, reputation. Invocation fraud also needs
further study, which helps to avoid disturbing feedback result
from unfriendly invocation. Besides, feedbacks to service registry
is a multidimensional value. WS selection over multitude
attributes will be studied in future.

1288

7. REFERENCES
[1] Shuping Ran, “A Model for Web Services Discovery with

QoS”, ACM SIGecom Exchange, Volume 4 Issue 1(March
2003).

[2] Gregor V. Bochmann, Brigitte Kerherve, Hanan Lutfiyya,
Mohammed-Vall M. Salem and Haiwei Ye, “Introducing
QoS to Electronic Commerce Applications”, Springer-Verlag
Berlin Heidelberg 2001 pp. 138-147.

[3] Si Won Choi, Jin Sun Her, and Soo Dong Kim, “QoS
Metrics for Evaluating Services from the Perspective of
Service Providers”, 2007 IEEE International Conference on
e-Business Engineering

[4] http://en.wikipedia.org/wiki/Nyquist-
Shannon_sampling_theorem (2009-7-20)

[5] Alan V.Oppenheim; Alan S.Willsky; with S.Hamid, “Signals
and Systems (2nd Edition), Pearson Education”, p250-
p257,p470-p476.

[6] Niko Thio and Shanika Karunasekera, Automatic
Measurement of a QoS Metric for Web Service

Recommendation, the 2005 Australian Software Engineering
Conference

[7] Guang Yang, Hao-peng Chen, An Extensible Computing
Model for Reputation Evaluation Based on Objective and
Automatic Feedbacks, Proceedings - ALPIT 2008, 7th
International Conference on Advanced Language Processing
and Web Information Technology.

[8] Zhang, Jingjun; Meng, Fanxin; Liu, Guangyuan ,Research on
SOA-based applications based on AOP and web services.
Proceedings of the 2008 International Conference on
Computer and Electrical Engineering, ICCEE 2008, p 753-
757, 2008

[9] http://en.wikipedia.org/wiki/Ring_Buffer (2009-7-23)..
[10] Kritikos Kyriakos, Plexousakis Dimitris "A semantic QoS-

based web service discovery algorithm for over-constrained
demands" NWeSP 2007 3rd International Conference on
Next Generation Web Services Practices, p 49-54, 2007

1289

