
A Heuristic Approach with Branch Cut to Service Substitution in Service
Orchestration1

1 This paper is supported by the National High-Tech Research Development Program of China (863 program) under Grant No. 2007AA01Z139.

Jinbo Du
School of Software

Shanghai Jiao Tong University
Shanghai, P.R.China
dujinbo@gmail.com

Haopeng Chen
School of Software

Shanghai Jiao Tong University
Shanghai, P.R.China

chen-hp@sjtu.edu.cn

Can Zhang
School of Software

Shanghai Jiao Tong University
Shanghai, P.R.China

zhangcan05@gmail.com

Abstract--With the rapidly growing number of Web services
throughout the Internet, Service Oriented Architecture (SOA)
enables a multitude of service providers (SP) to provide loosely
coupled and inter-operable services at different Quality of
Service (QoS) levels. This paper considers the services are
published to a QoS-aware registry. The structure of composite
service is described as a Service Orchestration that allows
atomic services to be brought together into one business
process; This paper considers the problem of finding a set of
substitution atomic services to make the Service Orchestration
re-satisfies the given multi-QoS constraints when one QoS
metric went unsatisfied at runtime. This paper leverage
hypothesis test to detect possible fault atomic services, and
propose heuristic algorithms with different level branch cut to
determine the Service Orchestration substitutions.
Experiments are given to testify the algorithms are effective
and efficient, and the probability cut algorithm reaches a
cut/search ratio of 137.04% without loss solutions.

SOA; Web Service; Service Orchestration; QoS-aware
Service Substitution

I. INTRODUCTION
There has been significant recent interest in QoS-

aware Service Composition[1,2,3,4,5]. The number of
Web services grows rapidly throughout the Internet, and
several UDDI Business Registries (UBR) established by
IBM, SAP, Microsoft have emerged in recent years.
However, none of them are pervasively used according to
the survey in [6]. The primary reason is that they only
considered functional criteria, while Service Oriented
Architectures (SOA) enable a multitude of service
providers (SP) to provide loosely coupled and inter-
operable services at different Quality of Service (QoS)
levels. As a result, certain subset of all possible non-
functional properties that may affect the quality of the
service collectively referred to as QoS[7,8,9] has been
taken into account[10].

QoS-aware registry enables inquire services based on
QoS metrics. Benefit from this feature, We consider a
composite service described as a Service Orchestration
that brought atomic services together into one business
process, such as BPEL[11], which allows constructs such
as sequence, switch, while, flow, and pick and brings

atomic services together. We consider the Service
Orchestration satisfies a certain QoS constraints, however,
while the QoS of atomic services changes at real-time, the
Service Orchestration would become unsatisfied, which
can be detected by the Orchestration Execution Engine or
3rd part monitors. In this environment, it makes sense to
investigate mechanisms to substitute atomic services by
inquires from a QoS-aware registry to re-satisfy the QoS
constraints. This problem is referred as the QoS-aware
Service Substitution.

A traditional approach to solve this problem is to re-
select all the atomic services, which transform this
problem into an Optimal Service Selection problem. The
optimal service selection is clearly an NP-Hard
problem[12,13], which generates all possible service
selections, and selects the optimal composition. Many
researchers have proposed different solutions to solve this
problem, and some give sub-optimal solutions in a
reasonable asymptotic time complexity. Evolved
algorithms by using normalization that computed Multiple
QoS metrics into one comparable value, and then the
knapsack[2] or genetic algorithm can be leveraged to
achieve a sub-optimal solution[16,17]. Another approach
is substitute services by using a backup service path
generated in the initial selection.

There are clearly problems with the approaches above.
The re-selection solution cost too much time and
additional unnecessary computation to selection faultless
atomic services, and the backup service path would
becomes also unsatisfied while runtime.

 Furthermore, service substitution is different from
service selection while the runtime characteristics are
considered. Based on the above, we propose a heuristic
approach based on the analysis of runtime QoS data for
each atomic services. There are two main problems to
tackle in order to solve QoS-aware service substitution
problem. The first is determine which atomic services
should be substituted and their substitution order; Another
problem is how to search a set of substitution atomic
services to re-satisfy the given QoS constraints. The
dynamic substitution problems such as semantically
compatibility and session state maintenance[18] are not
within the scope of this paper.

2009 International Conference on Frontier of Computer Science and Technology

978-0-7695-3932-4/09 $26.00 © 2009 IEEE

DOI 10.1109/FCST.2009.44

59

The paper is organized as follows. Section II
introduces the related work and assumptions about the
problem. Section III introduces the fault detection
algorithm in details. Two heuristic services substitution
algorithms are described in Section IV. Experimental
results are given in Section V. Section VI concludes the
paper.

II. RELATED WORK AND ASSUMPTIONS
Although QoS plays an important role in Web service

discovery, a widely-accepted standard specifying QoS
metrics and measurement has not existed yet. Many
researchers have proposed their own QoS definitions [8]
[19]. As a result , we are focused on the observable QoS
metrics, which can be presented by a numerical value.
Without loss of generality, we made the assumption that
all QoS metrics are decreasing functions of the quality,
and the best value of each QoS metrics is 0.

There are two major facets of related work to support
our approach. For each facet, we will make some
assumptions to make the paper clear and in focus. Firstly,
A QoS-aware registry should be valid in order to inquire
substitution services and their QoS data[10]. We made the
assumption that we do not need to take functional criteria
into consideration and focus on QoS metrics only.

The second facet is the QoS metric evaluation
method[14]. Such methods evaluate the QoS of service
orchestration from the QoS attributes of its atomic
services and from the orchestration structures. We also
made the assumption that the probability density function
(pdf) and cumulative distribution function (CDF) of all
atomic service QoS metrics are known, and all the QoS
metrics are independent of each other. With these pdfs
and CDFs, the pdf and CDF of the service orchestration
QoS metrics are assumed computable. In fact, the two
facets of related work are under researching in our team,
and we leverages them in our experiments yet.

Let,
• A service orchestration O be composed of N atomic

services si, i = 1, 2, … , N.
• m be the QoS metrics dimension, where m < N.
• Q = {A1, A2, …, Am } be a random variable stands

for the QoS metric vector of a service, where Ai stands for
each dimension QoS attribute with a given probability
density function p(Ai) and a cumulative distribution
function P(Ai).

• Qc = f(Q1, Q2, …, QN) be the QoS metric evaluation
function for certain service orchestration, and Qc be a
random variable stands for the QoS metric vector of the
service orchestration. Here we made the assumption the
probability density function p(Qc) and a cumulative
distribution function P(Qc) is computable.

• Qmax = {A1max, A2max, …, Ammax} be the QoS
constraints vector of the service orchestration. Notice we

have made the assumption that each QoS metrics are
decreasing function of its quantity.

III. ATOMIC SERVICE FAULT DETECTION
When one QoS metric of the service orchestration is

reported unsatisfied to the QoS constraints Qmax, we try to
detect which service or services went wrong and mark
them as Fault Services.

The reasons of a QoS metric reduction of a Service
Orchestration can be classified in two groups:

• One or more atomic services are down significantly.
• No atomic services are down significantly, but the

QoS metrics of one or more atomic services downgraded
slightly, which results the Service Orchestration’s QoS
metric went out of the given QoS constraints.

The first case is trivial and can be detected directly.
Thus, we focus on the second case in the following. The
basic idea of the detection for this case leverages
hypothesis test. We presents, in what follows, the
detection procedures that we develop in four principal
phases.

A. QoS metric sample choice
Because all the QoS metrics are assumed observable,

and the recent historical QoS metric data are recorded by
a monitor or can the Orchestration Execution Engine. We
select the most recent data as our samples under the
assumption: the size of the sample space should have a
reasonable size; On the other hand, the samples should be
the latest data after the fault arrival moment.

B. Decision test establishment
To carry out effectively a detection, it is first of all

necessary to define an event carrying the fault information,
which constitutes the selected samples. The decision
requires definitions of both hypothesis and its confidence
interval. In the simplest case we can define the hypothesis
like this:

H0: The certain QoS metric is acceptable.
H1: The certain QoS metric is significantly unsatisfied.
And the confidence interval:
Er : The hypothesis rejection area,
Ea : The hypothesis acceptance area.
As we mentioned in section II, assumptions were

made that the probability density function (pdf) and
cumulative distribution function (CDF) of all the QoS
metrics are known, and all the QoS metrics are
independent of each other.

Many measurable QoS metrics yields or
approximately yields one of normal distribution, log-
normal distribution, Fisher distribution, exponential
distribution or student distribution[15]. For each
distribution, we select appropriate test method.

60

Figure 1. Response time observations, fault occurred in 28th second.

For example, in some cases, response time(RT) yields
log-normal distribution[1], thus the log(RT) yields normal
distribution. Without loss of generality, we take normal
distribution in the following.

: We should select a Significance level either
depend on user pre-defined or by default, the selection of
which reflect on the count that how many fault atomic
service could be identified. The more fault identified, the
higher success probability of the service substitution
process, however, it also brings a much expensive
computing cost in the worst time when we found no
substitution is valid.

Mathematical expectation 0:The original QoS metric
for a atomic service while the Service Orchestration runs
normally, which would be given by the Monitor or the
Orchestration Execution Engine.

Then the significance index of a atomic service s can
be given in formula (1).

Thus, Significance(s) yields student distribution,
where S stands for the sample variance, and stands for
the sample mean, and n stands for the sample space size.

As we assumed in section II, all QoS metrics are
decreasing functions of their qualities. Thus, the original
hypothesis and checking hypothesis can be described as:

H0 : Significance(s)
H1: Significance(s) >
Fig. 2 shows the curve of student distribution and its

confidence interval. Based on the above, we consider s as
a Fault Service only when the original hypothesis H0 are
rejected.

Figure 2. Student distribution and its confidence interval.

C. Influence Factor calculation
The Significance(s) is well described how the atomic

service s deviated from its normal/original QoS metric,
but we cannot order the Fault Services by their
significance index. Atomic services with the same QoS
metric values would contribute unequally to a Service
Orchestration. Let Influence(s, O) be the influence factor
of a service s in Service Orchestration O when runs
normally, and obviously Influence(s, O) should be also
considered as another important parameter.

Influence(s, O) of different QoS metric types should be
calculated differently, the calculation algorithm is similar
to the QoS metric evaluation method[14], which we
introduced one of our related works in section II. We only
take response time as an example and give the algorithm
to compute the influence factor. The algorithm leverages
some Service Orchestration statistics data such as the
Branch Probability and Average Loop Count, which can
be gathered by the Orchestration Execution Engine or 3rd
party monitors. There are 4 basic cases in a orchestration,
and formula (2) to (5) are given for each case in the
following:

• Sequence:

• Branch:

• Loop:

0.0

1.0

2.0

3.0

4.0

5.0

1 6 11 16 21 26 31 36

Response time observations

Linear regression

0

Significance level

t-distribution H0 is rejected

t

f(t)

Significance(s)

61

• Concurrent:

Where i and k are tree nodes in the service

orchestration O, which is described in a tree structure (see
Fig. 3).

Figure 3. An example of an service orchestration on the left, the

corresponding tree structure on the right.

Let’s define the Fault Service Influence Effect of a

atomic service s as formula (6) in the following:

Where Effect(s) will approximately indicate how

significant the QoS metric of fault atomic service
contributes to the service orchestration.

D. Fault services set establishment
The results have be calculated from the previous

phases and the only work to do is an dynamic adjustment
to the Significance Level if there are too many or no
fault services are detected. It is reasonable to keep the
amount of fault services in a constant level.

The last step we put every Fault Service s and its Fault
Service Influence Effect Effect(s) into a Fault Services
Set F, which will be used in the next section.

As discussed above, we present the pseudo code of
fault service detection in Algorithm 1, Where A(s) stands
for the original QoS metric value of a atomic service s.

Algorithm 1 Fault Service Detection with Hypothesis Test

01: function CalculateInfluence (s, i) returns (Influence)
02: if i is a leaf node then
03: if activity(i) is invoke s then
04: return A(s);
05: else
06: return 0;
07: end if
08: else
09: switch activity(i)
10: case sequence:
11: return ;
12: case branch:
13: return
14: ;
15: case loop:
16: Inf ;
17: return ;
18: case concurrent:
19: return ;
20: end switch
21: end if
22:end function
23:
24:function FaultDetection(O) returns (F)
25: F NULL;
26: for each s � O do
27: Significance HypothesisFunction(s);
28: if Significance > then
29: Influence CalculateInfluence(s, O);
30: Effect Significance × Influence;
31: insert s to F order by Effect descending;
32: end if
33: end for each
34: return F;
35:end function

IV. SERVICE SUBSTITUTION SEARCH ALGORITHMS
In this section the service substitution search

algorithms will be introduced in details. Notations will be
given at the beginning and then the heuristic substitution
search algorithm with basic branch cut. After that a
probability branch cut algorithm will be introduced as an
improvement of the former basic heuristic algorithm.

A. Basic idea and notations
As we discussed in section I, without regard to the

runtime characteristics, service substitution algorithm is a
partial service selection procedure. However, service
substitution process is more strict to the asymptotic time
complexity because it should be computed at runtime. As
we discussed in the above section, we managed to limit
the Fault Services to a constant level while our Fault
Service detection phase, and calculated the Fault Service

62

Influence Effect Effect(s) from the runtime historical QoS
data as one of the heuristic factors.

Let,
• F be the Fault Services set detected in the previous

section. The atomic services in F are already sorted
decreasingly by its Fault Service Influence Effect
Effect(s).

• c be the count of atomic services in F.
• s F be the services in the Fault Services set.
• B(s) be the backup services set of service s. Notice

the backup services will be looked up dynamically in the
QoS aware registry.

• b(s) B(s) be a backup service in Set B(s).
• Q(s) = {A1(s), A2(s), ..., Am(s)} be the QoS metrics

of atomic service s.
• Z be the set of all possible service substitutions of

the fault atomic services of Service Orchestration O.
Notice that not all the atomic services in F should be
substituted until the O becomes satisfy QoS constraints
Qmax.

• z Z be a service substitution of 1 to c services that
support the Service Orchestration O. Notice that each z is
also a Service Orchestration and its QoS could be
computed.

• Q(z) = {A1(z), A2(z), ..., Am(z)} be the QoS metrics
of a service substitution z.

• N(z) = {NA1(z), NA2(z), ..., NAm(z)} be the
normalized QoS metrics of Q(z). The normalization
process scales each dimension of the values into the range
of 0 and 1.

B. Basic heuristic substitution algorithm
As we mentioned in section II, assumptions are made

that there is already QoS metric evaluation function as
following:

• extern function QoSMetric(z) returns Q(z);
This function calculates the QoS metrics for Service

Orchestration z by its structure and all QoS metrics of its
atomic services. There are many ways to model and
implements this function[14]. Most implementation treats
different QoS metrics and different Service Orchestration
structure separately or divided into different groups.
Notice in order to make a more precise evaluation, the
runtime heuristic data such as branches probabilities and
average loop count should also be passed to this function,
but it doesn’t represented in the function definition for the
sake of a better readability.

Algorithm 2 Heuristic Service Substitution Search
Algorithm with Branch Cut (HSSSABC)

01:function ComputeDistance(T) returns (T)
02: for each z T do
03: N(z) normalize(Q(z));
04: end for each

05: T sort T with |N(z), space(0, normalize(Qmax))|
06: return T;
07:end function
08:
09:function HeuristicSubstitution (z, i) returns (z)
10: if i c then return NULL;
11: s F[i];
12: T NULL;
13: Q ()m;
14: for each b B(s) do
15: if exist v B(s) satisfy all Ai(b) > Ai(v) then continue;
16: z substitute s with b in z;
17: add z to T;
18: if exist Ai(b) Ai then continue;
19: Q(z) QoSMetric(z);
20: if Q(z) satisfy Qmax then return z;
21: for each Ai Q
22: if Ai(z) Aimax and Ai Ai(b) then Ai Ai(b);
23: end for each
24: end for each
25: T ComputeDistance(T)
26: for each z T
27: z HeuristicSubstitution(z, i + 1);
28: if z NULL return z;
29: end for each
30: return NULL;
31:end function

Algorithm 2 shows the detailed steps of the heuristic

with dominated branch cut and bound cut. The initial
invocation is HeuristicSubstitution(O, 1). Notice that all
set are one-based indexing in this paper. Let T be a local
temporary set of unsatisfied substitutions. In line 5,
space(A, B) stands for the cuboid space enclosed by
planes through point A or B and parallel to coordinate
surfaces. |A, S| stands for the distance between point A
and the space S. Code line 0 to line 7 defines a utility
function ComputeDistance(T) used to sort those
unsatisfied substitutions by the distance between the QoS
metrics of each substitutions and the satisfied solution
space. Notice that the normalization procedure could be
implemented in variable approaches.

Fig. 4 shows the solution space and the satisfied
solution(feasible solution) space of a 2 dimension QoS
metrics constrained problem. Each axis represents a QoS
metric. The solution space is the area delimited by the
dashed lines, which indicate the lower and upper bounds
for Q1 and Q2 of the Service Orchestration. The satisfied
solution space is represented by the dotted area. It is the
portion of the solution space delimited by the lower bound
and the QoS constraints (Qmax). The function
ComputeDistance(T) calculate for each substitution in set
T the distance to the solution, and sort the result in an
increasing order as a heuristic factor. As shown in Figure
4, z1 is closer to the satisfied solution space than z2 and
z3, substitute other Fault Services in z1 would have a
higher successful probability than z2 and z3. As shown in

63

the algorithm 2, It sorts set T in line 25, and then invoke
itself recursively in line 27.

Figure 4. A conceptual representation of the solution space and of the

satisfied solution. L(Q1) denotes the lower bound of the Q1 in the
solution space, while U(Q1) denotes the upper bound, so are L(Q2) and

U(Q2). z1, z2, z3 denotes substitutions in the solution space.

From line 14 to line 24, we try to substitute the (i)th

fault service in z, and check whether there is a satisfied
substitution.

There are another two optimizations:
• Dominated Branch Cut

The idea of Dominated Branch Cut is easy to
comprehend. It is shown in line 15 in the Algorithm. For a
given backup service, of which every dimension of QoS
metrics are lower than another backup service, the given
backup service and all its subsequent substitutions should
be cut.

• Bound Cut
Bound Cut is designed to cut redundant invocations to

function QoSMetric(z) by set a Bound Cut Threshold Q.
The bound is initialized with the m-dimension vector ()m
in line 13 and reduced in line 21 to line 23, and it
represents the unsatisfied QoS metric in every QoS
dimension. That’s to say, if a QoS of a backup service has
one or more dimension greater than Q, the substitution of
this backup service must be an unsatisfied solution and it
should be skip. This optimization is shown in line 18.

Now we use the proposed algorithm to compute the
solution for the Service Orchestration in Fig.3 using the
data listed in Table I. We take the following as known:
the average loop count of the WHILE activity in Fig.3 is
3.0, and the branch probabilities of the IF-ELSE activities
are both 0.5.

In order to show how the substitution algorithm works,
we skip the Fault Services detection phase and assume S1,
S5, S2 are Fault Services, which have already been
detected and ordered by their Influence Effects. S3, S4
run normally and no need to be substituted. We also

assume that there are only three QoS metrics are took into
account. Let Qmax = (3.0, 4.0, 2.0).

TABLE I. QOS METRICS OF ATOM SERVICES AND ITS BACKUP SERVICES
IN A SERVICE ORCHESTRATION. THE SERVICE ORCHESTRATION IS

SHOWN IN FIG. 3

Services QoS Backups QoS
S1 (1, 1, 1) S1-B1 (0.4532,0.8799,0.4474)

S1-B2 (0.7102,0.3011,0.6500)
S1-B3 (0.6767,0.2232,0.6220)

S2 (1, 1, 1) S2-B1 (0.1710,0.6405,0.4474)
S2-B2 (0.2584,0.6322,0.2812)

 S2-B3 (0.6518,0.5516,0.3812)
S3 (1, 1, 1) - -
S4 (1, 1, 1) - -
S5 (1, 1, 1) S5-B1 (0.9875,0.8826,0.0261)

S5-B2 (0.3793,0.2538,0.8554)
S5-B3 (0.3317,0.6754,0.4680)

The steps in this example are given below:
• Initial State: z = (S1, S2, S3, S4, S5), Q(z) =

(3.5, 4.0, 3.5). Notice each dimension of Q(z) would be
unequal because different QoS metrics are calculated
differently by function QoSMetric(z). Bound Cut
Threshold Q = (, ,).

• Step I: z1 = (S1-B1, S2, S3, S4, S5), Q(z1) =
(2.9532, 4.8799, 2.9474), Q = (,0.8799, 0.4474).

• Step II: Service S1-B2 meet the Dominated
Branch Cut condition. Substitution (S1-B2, S2, S3, S4, S5)
and all its subsequent substitutions are cut.

• Step III: z2 = (S1-B3, S2, S3, S4, S5). Because
the 3rd QoS attribute of S1-B3 is greater than the
corresponding attribute in Q (0.6220 > 0.4474), Bound
Cut meet, no need to calculate Q(z2) at present.

• Step IV: Compute distances to the solution space
for both z1 and z2. ComputeDistance(z1) = 1.4211;
ComputeDistance(z2) = 1.4190. Sort solutions in this
order: (z2, z1) and start to substitute S5 recursively.

• Step V: z3 = (S1-B3, S2, S3, S4, S5-B1), Q(z3) =
(3.1642, 4.1058, 2.1481), Q = (0.9875, 0.8826, 0.0261).

• Step VI: z4 = (S1-B3, S2, S3, S4, S5-B2). Bound
Cut meet, no need to calculate Q(z4) at present.

• Step VII: z5 = (S1-B3, S2, S3, S4, S5-B3).
Bound Cut meet, no need to calculate Q(z5) at present.

• Step VIII: Compute distance for z3, z4, z5 and get
the order (z5, z4, z3).

• Step IX: z6 = (S1-B3, S2-B1, S3, S4, S5-B1),
Q(z6) = (2.7497, 3.7463, 1.8718). where Q(z6) < Qmax.
Solution is found after six substitutions.

C. Probability Branch Cut improvement
As we mentioned in section II, the assumption was

made that the following function existed:

Q1max

L(Q2)

z3

U(Q1) L(Q1)

U(Q2) z1

Q2max

z2

Q2

Q1

64

• extern function ProbabilityQoSMetric(z)
returns p(z), P(z);

With a certain Service Orchestration z, and with the
probability density function (pdf) and cumulative
distribution function (CDF) of each atomic services, the
function compute the pdf p(z) and CDF P(z) of the
Service Orchestration z.

Thus, Let

In formula (7), P denotes the probability of the event:
z satisfy Qmax.

According to the principle that extremely small
probability did not occur in a time, we set a Branch Cut
Threshold to a proper small positive value. If P < , we
consider the a substitution z is not valuable for further
substitutions and the search branch should be cut.

Based on the idea above, we improved the function
ComputeDistance(T) in Algorithm 2 to the function
ComputeDistanceAndCutBranch(T), which presents in
Algorithm 3. Notice in the computing of Service
Orchestration’s pdf and CDF, only not-yet-substituted
atomic services QoS metrics are treated as random
variables. The other atomic services QoS values are
treated as constants or one-point distribution as well.

Algorithm 3: Compute Distance And Cut Branch

01:function ComputeDistanceAndCutBranch(T) returns (T)
02: for each z T do
03: p(z), P(z) ProbabilityQoSMetric(z);

04: ;
05: if P then
06: remove z from T;
07: else
08: N(z) normalize();
09: end if
10: end for each
11: T sort T with |N(z), space(0, normalize(Qmax))|
12: return T;
13:end function

D. Adaptive the Service
After the substitution, if solution were found, we got a

new Service Orchestration z. The next phase is to
adaptive the parameters and session state, for which some
solutions are given by other researchers and it is out of
the scope of this paper.

V. SIMULATION EXPERIMENTS
We implemented the algorithm to conduct

experiments aimed at evaluating effective and efficient of
the two substitution algorithms.

Our experiments still leverage the Service
Orchestration given in Fig.3. Three QoS metrics are
consider in our QoS metrics vector: The Response Time,
the Price of Service and Execution Time. We generate all
the QoS attributes randomly. Then all the QoS attribute
yield uniform distribution in (0, 1). The normalization
function we choose was:

We use the same loop count for the WHILE activity

the same branch probabilities for the IF-ELSE activities in
the sample we given in section IV. We still let S1, S5 and
S2 be the Fault Services, while we increase the count of
backup services for each atomic services to 5.

We first set to 0.02 and Qmax to (3.0, 4.0, 2.5), and
run both algorithms 100 times. Table II shows the first 10
results of both The Basic Algorithm (Algorithm 2) and
Evolved Algorithm. Notice when no solutions are found,
Search + Dominated Cut + Prob. Cut equals to the
solution space size.

TABLE II. PART OF SIMULATION EXPERIMENT RESULTS

Exp. Alg. Result Search
Dom.
Cut

Bound
Cut

Prob.
Cut

1 Basic Succeed 35 28 23 0

1 Evolved Succeed 29 24 20 10

2 Basic No Sol. 124 31 85 0

2 Evolved No Sol. 54 31 34 70

3 Basic Succeed 27 36 15 0

3 Evolved Succeed 15 33 9 15

4 Basic Succeed 5 111 1 0

4 Evolved Succeed 5 111 1 0

5 Basic Succeed 61 93 25 0

5 Evolved Succeed 31 93 17 30

6 Basic Succeed 53 41 25 0

6 Evolved Succeed 33 36 16 25

7 Basic Succeed 17 37 9 0

7 Evolved Succeed 17 37 9 0

8 Basic Succeed 13 107 5 0

8 Evolved Succeed 13 107 5 0

9 Basic Succeed 23 10 9 0

9 Evolved Succeed 11 7 6 45

10 Basic No Sol. 68 87 29 0

10 Evolved No Sol. 41 69 20 45

We then carry out experiments under different QoS

constraints Qmax and different Probability Cut Threshold
. For each pair of QoS constraints and Probability Cut

Threshold, we simulated 1000 times with different backup
services generated randomly. The results are shown in
Table III.

65

TABLE III. STATISTICS UNDER DIFFERENT AND QMAX VALUES. ALG. B

DENOTES BASIC ALGORITHM AND ALG. E DENOTES EVOLVED

ALGORITHM

 Qmax
Has
Sol. Alg. Search Prob-Cut Error

0

2.0
3.0
2.0

No
(668)

B 33.63% 0.00%

- E 12.47% 27.22%

Yes
(332)

B 8.89% 0.00%

0.00% E 4.52% 6.68%

2.5
3.5
2.5

No
(19)

B 1.23% 0.00%

- E 0.82% 0.49%

Yes
(981)

B 14.18% 0.00%

0.00% E 10.92% 4.97%

0.02

2.0
3.0
2.0

No
(674)

B 34.35% 0.00%

- E 11.50% 30.09%

Yes
(326)

B 8.45% 0.00%

0.00% E 4.23% 7.17%

2.5
3.5
2.5

No
(14)

B 0.95% 0.00%

- E 0.58% 0.43%

Yes
(986)

B 14.80% 0.00%

0.00% E 11.27% 5.29%

0.1

2.0
3.0
2.0

No
(701)

B 35.38% 0.00%

- E 7.83% 40.27%

Yes
(299)

B 8.70% 0.00%

1.79% E 2.95% 10.45%

2.5
3.5
2.5

No
(12)

B 0.72% 0.00%

- E 0.45% 0.34%

Yes
(988)

B 14.33% 0.00%

0.00% E 9.98% 6.96%

0.2

2.0
3.0
2.0

No
(643)

B 32.75% 0.00%

- E 3.85% 44.22%

Yes
(357)

B 9.24% 0.00%

11.80% E 2.41% 17.06%

2.5
3.5
2.5

No
(22)

B 1.42% 0.00%

- E 0.57% 1.04%

Yes
(978)

B 14.52% 0.00%

0.70% E 9.37% 9.54%

We draw from our experiments that:
Both the algorithms are effective. The Basic algorithm

is efficiency when there is a solution. It can found the
solution with an average 11.64% searches in the whole
solution space, while the Evolved algorithm with
probability branch cut searches only 6.96%.

In the worst time (No substitution is valid in the
solution space), the Basic algorithm takes an average
17.55% searches of the whole solution space. The left
82.45% are cut by Dominated Cut, which is simple but
useful. The Evolved algorithm searches only 4.76% in the
solution space in the worst time in our experiments.

The Evolved algorithm is efficiency than the Basic
algorithm. The Evolved algorithm searches less than the
Basic one by 60.85% in total, especially 72.88% in the
worst time. Notice that the Evolved algorithm searches no
more than 12.47% of the solution space in average no
matter what QoS constraints and Probability Cut
Threshold are given, or whether there is a solution or not.

The Evolved algorithm can go wrong and fail to find
existing solutions when the Probability Cut Threshold is
too high. In the experiment, there are average 6.25%
errors when is set to 20%, but the probability cut rate
gains slightly. Notice that when is set to zero, no
solution will be lost, and there are still a high cut rate (the
cut/search ratio is 137.04%).

When the QoS constraints are loose, the satisfied
service substitutions are prone to be turn up, and the
Evolved Algorithm cuts less. In practice, because the
ProbabilityQoSMetric(z) function consumed additional
time to the Basic algorithm, the real execute time of the
two algorithms become closer, and sometimes the
Evolved Algorithm costs more time than the Basic one. In
this condition, it is better to select the Basic Algorithm.

VI. CONCLUSIONS AND FUTURE WORK
Service Orchestrations enables inter-operable services

composed through dynamic discovery and substituted at
runtime without modification of the source code. With the
growth of web services and QoS-aware registries,
substitute an atomic service in an SOA application or a
composite service becomes common.

This paper introduced a heuristic solution to solve the
QoS-aware Service Substitution problems. We presented
such an effective mechanism that, detect and substitute
fault atomic services in an Service Orchestration to re-
satisfy its QoS constraints efficiently. The approach
composed in two principal phases: detecting the fault
atomic services by using hypothesis test and the searching
procedure for proper substitutions. In the searching phase,
this paper presented a heuristic algorithm that searches
along the most possible solution, and then introduced an
evolved algorithm with Probability Branch Cut, which in
the experiments reported closer to the former algorithm in
most times when the satisfied service substitutions are
prone to be turn up, but when the satisfied solutions are
rare or even no satisfied solution exists, the latter
algorithm will be much more effective while there would
be a sacrifice of the correctness in a tunable probability.

We are also currently working on an interesting
extension of the work reported here. The probability cut
process would be simplified by approximate calculation.

66

In addition, In order to solve the problem
limit, The substitution process could be
multiple passes, and each passes cou
computed in a service substitution cloud,
cloud can be generalized as a part
infrastructures.

REFERENCES
[1] Hiroshi Wada, Paskorn Champrasert, Junic

Oba , “Multiobjective Optimization of S
Composition”, Proceedings of the 2008 I
Services - Part I, Jul. 2008

[2] T. Yu and K. J. Lin, “Service Selection Algorit
Complex Services with Multiple QoS Constr
Int’l Conf. on Service Oriented Computing,
2005.

[3] Jinghai Rao and Xiaomeng Su, “A Survey o
Service Composition Methods, Semantic Web
Process Composition”, vol. 3387, 2005.

[4] Yu, T., Zhang, Y., and Lin, K.-J. “Efficient
services selection with end-to-end QoS constr
Web 1, 1, Article 6 (May 2007), pp. 26. 2007

[5] [5] Lei Li, Jun Wei, Tao Huang, “High Perform
Multi-QoS Constrained Web Services Selectio
the 5th international conference on Service-O
Sep. 2007 - Sep. 2007, Vienna, Austria, pp. 28

[6] Eyhab Al-Masri,Qusay H. Mahmoud. “Investi
on the world wide web”, Proceeding of the
conference on World Wide Web, Apr 2008

[7] V. Cardellini, E. Casalicchio, V. Grassi, a
“Flow-based service selection for web s
supporting multiple qos classes”, ICWS 200
Web Services, pp.743–750, July 9-13 2007.

[8] Menasce D.A., “QoS Issues in Web Servic
Computing, November-December 2002, vol. 6,

[9] K. Lee, J. Jeon, W. Lee, S.-H. Jeong, S.-W. P
Services: Requirements and Possib
http://www.w3c.or.kr/kr-office/TR/2003/ws-qo
Group, 2003.

[10] Guang Yang, Haopeng Chen, “An Extensible
for Reputation Evaluation Based on Object
Feedbacks”, International Conference on A
Processing and Web Information Technology, 2

m in a strict time
e designed into
uld be parallel
, this computing
t of the SOA

hi Suzuki, Katsuya
SLA-aware Service
IEEE Congress on

thms for Composing
raints”, Proc. of 3rd

pp. 130–143, Dec.

of Automated Web
b Services and Web

algorithms for Web
raints”, ACM Trans.

mance Approach for
on” , Proceedings of
Oriented Computing,
83 – 294
igating web services
e 17th international

and L. P.Francesco,
ervice composition

07. IEEE Intl. Conf.

ces”, IEEE Internet
, pp. 72-75.
Park, “QoS for Web
ble Approaches”,
os/ W3C Working

e Computing Model
tive and Automatic

Advanced Language
2008

[11] “Web Service - Business Process
BPEL)” , Version 2.0 - OASIS Comm

[12] Andreas Mielke, “Elements for resp
transaction systems”, Performance E
653, Jul. 2006

[13] G. Canfora, M. D. Penta, R. Espos
Approach for QoS-aware Service Co
Algorithms”. In Genetic and
Conference, June 2005.

[14] Daniel A. Menasc´e, Emiliano Cas
Heuristic Approach to Optimal Se
Oriented Architectures”, WOSP’08, J
New Jersey, USA.

[15] R. H. Mokhneche, H. Maaref, and V
Techniques Analysis and Developmen
proceedings of the 13th European Si
(EUSIPCO 2005)

[16] G. Canfora, M. D. Penta, R. Espos
Approach for QoS-aware Service Co
Algorithms”. In Genetic and
Conference, June 2005.

[17] M. C. Jaeger and G. Mühl. “QoS-base
Implementation of a Genetic Alg
Communication in Distributed Syste
Oriented Architectures and Service-O
2007.

[18] Manel Fredj, Nikolaos Georgantas,
Zarras. “Dynamic Service Substit
Architectures”. In Proceedings o
Conference on Service Computing (SC

[19] A. Mani and A. Nagarajan, “Understa
Web Services”,
106.ibm.com/developerworks/library/w
2002.

[20] H. L. Vu, M. Hauswirth, and K. A
Selection and Ranking with Trust an
Technical Report IC2005029, Sw
Technology at Lausanne (EPFL), Swit

[21] R. Berbner, M. Spahn, N. Repp, O. H
“Heuristics for QoS-aware Web Servi
Conf. on Web Services, Sept. 2006.

[22] C. Peltz. “Web services orchestratio
Computer, 36(10):46–52, 2003.

[23] Antonio Bucchiarone, Stefania Gne
Composition Languages and Models”,

Execution Language (WS
mittee Draft, 17th May, 2006.
ponse-time statistics in ERP
Evaluation, vol. 63, pp. 635-

sito, and M. L. Villani. “An
omposition based on Genetic
Evolutionary Computation

alicchio, Vinod Dubey, “A
ervice Selection in Service
June 24–26, 2008, Princeton,

V. Vigneron, “Fault Detection
nt of its Procedural Phases” ,
ignal Processing Conference

sito, and M. L. Villani. “An
omposition based on Genetic
Evolutionary Computation

ed Selection of Services: The
gorithm In Conference on
ms”, Workshop on Service-
Oriented Computing, March

Valerie Issarny, Apostolos
tution in Service-Oriented
f the IEEE International
CC), pp. 3443-3448, 2008.
anding Quality of Service for

http://www-
wsquality .html, January

Aberer. “QoS-Based Service
nd Reputation Management”.
wiss Federal Institute of
tzerland, June 2005.
Heckmann, and R. Steinmetz,
ice Composition,” Proc. Int’l

on and choreography”. IEEE

esi, ”A Survey on Services
, Elsevier Science B. V. 2006

67

