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Abstract--With the rapidly growing number of Web services 
throughout the Internet, Service Oriented Architecture (SOA) 
enables a multitude of service providers (SP) to provide loosely 
coupled and inter-operable services at different Quality of 
Service (QoS) levels. This paper considers the services are 
published to a QoS-aware registry. The structure of composite 
service is described as a Service Orchestration that allows 
atomic services to be brought together into one business 
process; This paper considers the problem of finding a set of 
substitution atomic services to make the Service Orchestration 
re-satisfies the given multi-QoS constraints when one QoS 
metric went unsatisfied at runtime. This paper leverage 
hypothesis test to detect possible fault atomic services, and 
propose heuristic algorithms with different level branch cut to 
determine the Service Orchestration substitutions. 
Experiments are given to testify the algorithms are effective 
and efficient, and the probability cut algorithm reaches a 
cut/search ratio of 137.04% without loss solutions. 
 

SOA; Web Service; Service Orchestration; QoS-aware 
Service Substitution 

I.  INTRODUCTION 
There has been significant recent interest in QoS-

aware Service Composition[1,2,3,4,5]. The number of 
Web services grows rapidly throughout the Internet, and 
several UDDI Business Registries (UBR) established by 
IBM, SAP, Microsoft have emerged in recent years. 
However, none of them are pervasively used according to 
the survey in [6]. The primary reason is that they only 
considered functional criteria, while Service Oriented 
Architectures (SOA) enable a multitude of service 
providers (SP) to provide loosely coupled and inter-
operable services at different Quality of Service (QoS) 
levels. As a result, certain subset of all possible non-
functional properties that may affect the quality of the 
service collectively referred to as QoS[7,8,9] has been 
taken into account[10].  

QoS-aware registry enables inquire services based on 
QoS metrics. Benefit from this feature, We consider a 
composite service described as a Service Orchestration 
that brought atomic services together into one business 
process, such as BPEL[11], which allows constructs such 
as sequence, switch, while, flow, and pick and brings 

atomic services together. We consider the Service 
Orchestration satisfies a certain QoS constraints, however, 
while the QoS of atomic services changes at real-time, the 
Service Orchestration would become unsatisfied, which 
can be detected by the Orchestration Execution Engine or 
3rd part monitors. In this environment, it makes sense to 
investigate mechanisms to substitute atomic services by 
inquires from a QoS-aware registry to re-satisfy the QoS 
constraints. This problem is referred as the QoS-aware 
Service Substitution. 

A traditional approach to solve this problem is to re-
select all the atomic services, which transform this 
problem into an Optimal Service Selection problem. The 
optimal service selection is clearly an NP-Hard 
problem[12,13], which generates all possible service 
selections, and selects the optimal composition. Many 
researchers have proposed different solutions to solve this 
problem, and some give sub-optimal solutions in a 
reasonable asymptotic time complexity. Evolved 
algorithms by using normalization that computed Multiple 
QoS metrics into one comparable value, and then the 
knapsack[2] or genetic algorithm can be leveraged to 
achieve a sub-optimal solution[16,17]. Another approach 
is substitute services by using a backup service path 
generated in the initial selection.  

There are clearly problems with the approaches above. 
The re-selection solution cost too much time and 
additional unnecessary computation to selection faultless 
atomic services, and the backup service path would 
becomes also unsatisfied while runtime. 

 Furthermore, service substitution is different from 
service selection while the runtime characteristics are 
considered. Based on the above, we propose a heuristic 
approach based on the analysis of runtime QoS data for 
each atomic services. There are two main problems to 
tackle in order to solve QoS-aware service substitution 
problem. The first is determine which atomic services 
should be substituted and their substitution order; Another 
problem is how to search a set of substitution atomic 
services to re-satisfy the given QoS constraints. The 
dynamic substitution problems such as semantically 
compatibility and session state maintenance[18] are not 
within the scope of this paper. 
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The paper is organized as follows. Section II 
introduces the related work and assumptions about the 
problem. Section III introduces the fault detection 
algorithm in details. Two heuristic services substitution 
algorithms are described in Section IV. Experimental 
results are given in Section V. Section VI concludes the 
paper. 

 

II. RELATED WORK AND ASSUMPTIONS 
Although QoS plays an important role in Web service 

discovery, a widely-accepted standard specifying QoS 
metrics and measurement has not existed yet. Many 
researchers have proposed their own QoS definitions [8] 
[19]. As a result , we are focused on the observable QoS 
metrics, which can be presented by a numerical value. 
Without loss of generality, we made the assumption that 
all QoS metrics are decreasing functions of the quality, 
and the best value of each QoS metrics is 0. 

There are two major facets of related work to support 
our approach. For each facet, we will make some 
assumptions to make the paper clear and in focus. Firstly, 
A QoS-aware registry should be valid in order to inquire 
substitution services and their QoS data[10]. We made the 
assumption that we do not need to take functional criteria 
into consideration and focus on QoS metrics only. 

The second facet is the QoS metric evaluation 
method[14]. Such methods evaluate the QoS of service 
orchestration from the QoS attributes of its atomic 
services and from the orchestration structures. We also 
made the assumption that the probability density function 
(pdf) and cumulative distribution function (CDF) of all 
atomic service QoS metrics are known, and all the QoS 
metrics are independent of each other. With these pdfs 
and CDFs, the pdf and CDF of the service orchestration 
QoS metrics are assumed computable. In fact, the two 
facets of related work are under researching in our team, 
and we leverages them in our experiments yet. 

Let, 
• A service orchestration O be composed of N atomic 

services si, i = 1, 2, … , N. 
• m be the QoS metrics dimension, where m < N. 
• Q = {A1, A2, …, Am } be a random variable stands 

for the QoS metric vector of a service, where Ai stands for 
each dimension QoS attribute with a given probability 
density function p(Ai) and a cumulative distribution 
function P(Ai).  

• Qc = f(Q1, Q2, …, QN) be the QoS metric evaluation 
function for certain service orchestration, and Qc be a 
random variable stands for the QoS metric vector of the 
service orchestration. Here we made the assumption the 
probability density function p(Qc) and a cumulative 
distribution function P(Qc) is computable. 

• Qmax = {A1max, A2max, …, Ammax} be the QoS 
constraints vector of the service orchestration. Notice we 

have made the assumption that each QoS metrics are 
decreasing function of its quantity. 

III. ATOMIC SERVICE FAULT DETECTION 
When one QoS metric of the service orchestration is 

reported unsatisfied to the QoS constraints Qmax, we try to 
detect which service or services went wrong and mark 
them as Fault Services.  

The reasons of a QoS metric reduction of a Service 
Orchestration can be classified in two groups: 

• One or more atomic services are down significantly. 
• No atomic services are down significantly, but the 

QoS metrics of one or more atomic services downgraded 
slightly, which results the Service Orchestration’s QoS 
metric went out of the given QoS constraints.  

The first case is trivial and can be detected directly. 
Thus, we focus on the second case in the following. The 
basic idea of the detection for this case leverages 
hypothesis test. We presents, in what follows, the 
detection procedures that we develop in four principal 
phases. 

A. QoS metric sample choice 
Because all the QoS metrics are assumed observable, 

and the recent historical QoS metric data are recorded by 
a monitor or can the Orchestration Execution Engine. We 
select the most recent data as our samples under the 
assumption: the size of the sample space should have a 
reasonable size; On the other hand, the samples should be 
the latest data after the fault arrival moment. 

B. Decision test establishment 
To carry out effectively a detection, it is first of all 

necessary to define an event carrying the fault information, 
which constitutes the selected samples. The decision 
requires definitions of both hypothesis and its confidence 
interval. In the simplest case we can define the hypothesis 
like this: 

H0: The certain QoS metric is acceptable. 
H1: The certain QoS metric is significantly unsatisfied. 
And the confidence interval:  
Er : The hypothesis rejection area, 
Ea : The hypothesis acceptance area. 
As we mentioned in section II, assumptions were 

made that the probability density function (pdf) and 
cumulative distribution function (CDF) of all the QoS 
metrics are known, and all the QoS metrics are 
independent of each other. 

Many measurable QoS metrics yields or 
approximately yields one of normal distribution, log-
normal distribution, Fisher distribution, exponential 
distribution or student distribution[15]. For each 
distribution, we select appropriate test method. 
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Figure 1. Response time observations, fault occurred in 28th second. 

For example, in some cases, response time(RT) yields 
log-normal distribution[1], thus the log(RT) yields normal 
distribution. Without loss of generality, we take normal 
distribution in the following. 

: We should select a Significance level  either 
depend on user pre-defined or by default, the selection of 
which reflect on the count that how many fault atomic 
service could be identified. The more fault identified, the 
higher success probability of the service substitution 
process, however, it also brings a much expensive 
computing cost in the worst time when we found no 
substitution is valid. 

Mathematical expectation 0:The original QoS metric 
for a atomic service while the Service Orchestration runs 
normally, which would be given by the Monitor or the 
Orchestration Execution Engine. 

Then the significance index of a atomic service s can 
be given in formula (1). 

 

Thus, Significance(s) yields student distribution, 
where S stands for the sample variance, and  stands for 
the sample mean, and n stands for the sample space size. 

As we assumed in section II, all QoS metrics are 
decreasing functions of their qualities. Thus, the original 
hypothesis and checking hypothesis can be described as: 

H0 :  Significance(s)   
H1:  Significance(s) >  
Fig. 2 shows the curve of student distribution and its 

confidence interval. Based on the above, we consider s as 
a Fault Service only when the original hypothesis H0 are 
rejected. 

 

 
Figure 2. Student distribution and its confidence interval. 

C.  Influence Factor calculation 
The Significance(s) is well described how the atomic 

service s deviated from its normal/original QoS metric, 
but we cannot order the Fault Services by their 
significance index. Atomic services with the same QoS 
metric values would contribute unequally to a Service 
Orchestration. Let Influence(s, O) be the influence factor 
of a service s in Service Orchestration O when runs 
normally, and obviously Influence(s, O)  should be also 
considered as another important parameter. 

Influence(s, O) of different QoS metric types should be 
calculated differently, the calculation algorithm is similar 
to the QoS metric evaluation method[14], which we 
introduced one of our related works in section II. We only 
take response time as an example and give the algorithm 
to compute the influence factor. The algorithm leverages 
some Service Orchestration statistics data such as the 
Branch Probability and Average Loop Count, which can 
be gathered by the Orchestration Execution Engine or 3rd 
party monitors. There are 4 basic cases in a orchestration, 
and formula (2) to (5) are given for each case in the 
following:  

• Sequence:  
 

 
• Branch:  

 
 

• Loop:  
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• Concurrent:  

 

 
Where i and k are tree nodes in the service 

orchestration O, which is described in a tree structure (see 
Fig. 3). 

 
Figure 3. An example of an service orchestration on the left, the 

corresponding tree structure on the right. 

 
Let’s define the Fault Service Influence Effect of a 

atomic service s as formula (6) in the following: 
 

 
 
Where Effect(s) will approximately indicate how 

significant the QoS metric of fault atomic service 
contributes to the service orchestration. 

D. Fault services set establishment 
The results have be calculated from the previous 

phases and the only work to do is an dynamic adjustment 
to the Significance Level  if there are too many or no 
fault services are detected. It is reasonable to keep the 
amount of fault services in a constant level. 

The last step we put every Fault Service s and its Fault 
Service Influence Effect Effect(s) into a Fault Services 
Set F, which will be used in the next section. 

As discussed above, we present the pseudo code of 
fault service detection in Algorithm 1, Where A(s) stands 
for the original QoS metric value of a atomic service s. 
 
 

Algorithm 1 Fault Service Detection with Hypothesis Test 
 
01: function CalculateInfluence (s, i) returns (Influence) 
02:  if i is a leaf node then 
03:  if activity(i) is invoke s then 
04:         return A(s); 
05:  else 
06:      return 0; 
07:  end if 
08:  else 
09:  switch activity(i) 
10:  case sequence:  
11:      return ; 
12:  case branch:    
13:      return  
14:   ; 
15:  case loop: 
16:      Inf  ; 
17:      return  ; 
18:  case concurrent: 
19:      return ; 
20:  end switch 
21: end if 
22:end function 
23: 
24:function FaultDetection(O) returns (F) 
25: F  NULL; 
26: for each s � O do 
27:   Significance  HypothesisFunction(s); 
28:   if Significance >  then 
29:   Influence  CalculateInfluence(s, O); 
30:   Effect  Significance × Influence; 
31:   insert s to F order by Effect descending; 
32:   end if 
33: end for each 
34: return F; 
35:end function 
 

IV. SERVICE SUBSTITUTION SEARCH ALGORITHMS 
In this section the service substitution search 

algorithms will be introduced in details. Notations will be 
given at the beginning and then the heuristic substitution 
search algorithm with basic branch cut. After that a 
probability branch cut algorithm will be introduced as an 
improvement of the former basic heuristic  algorithm. 

A. Basic idea and notations 
As we discussed in section I, without regard to the 

runtime characteristics, service substitution algorithm is a 
partial service selection procedure. However, service 
substitution process is more strict to the asymptotic time 
complexity because it should be computed at runtime. As 
we discussed in the above section, we managed to limit 
the Fault Services to a constant level while our Fault 
Service detection phase, and calculated the Fault Service 
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Influence Effect Effect(s) from the runtime historical QoS 
data as one of the heuristic factors. 

Let,  
• F  be the Fault Services set detected in the previous 

section. The atomic services in F are already sorted 
decreasingly by its Fault Service Influence Effect 
Effect(s). 

• c be the count of atomic services in F. 
• s F be the services in the Fault Services set. 
• B(s) be the backup services set of service s. Notice 

the backup services will be looked up dynamically in the 
QoS aware registry. 

• b(s) B(s) be a backup service in Set B(s). 
• Q(s) = {A1(s), A2(s), ..., Am(s)} be the QoS metrics 

of atomic service s. 
• Z be the set of all possible service substitutions of 

the fault atomic services of Service Orchestration O. 
Notice that not all the atomic services in F should be 
substituted until the O becomes satisfy QoS constraints 
Qmax. 

• z  Z be a service substitution of 1 to c services that 
support the Service Orchestration O. Notice that each z is 
also a Service Orchestration and its QoS could be 
computed. 

• Q(z) = {A1(z), A2(z), ..., Am(z)} be the QoS metrics 
of a service substitution z. 

• N(z) = {NA1(z), NA2(z), ..., NAm(z)} be the 
normalized QoS metrics of Q(z). The normalization 
process scales each dimension of the values into the range 
of 0 and 1. 

 

B. Basic heuristic substitution algorithm 
As we mentioned in section II, assumptions are made 

that there is already QoS metric evaluation function as 
following: 

• extern function QoSMetric(z) returns Q(z); 
This function calculates the QoS metrics for Service 

Orchestration z by its structure and all QoS metrics of its 
atomic services. There are many ways to model and 
implements this function[14]. Most implementation treats 
different QoS metrics and different Service Orchestration 
structure separately or divided into different groups. 
Notice in order to make a more precise evaluation, the 
runtime heuristic data such as branches probabilities and 
average loop count should also be passed to this function, 
but it doesn’t represented in the function definition for the 
sake of a better readability. 

 
Algorithm 2 Heuristic Service Substitution Search 
Algorithm with Branch Cut (HSSSABC) 
 
01:function ComputeDistance(T) returns (T) 
02: for each z  T do 
03:  N(z)  normalize(Q(z)); 
04: end for each 

05: T  sort T with |N(z), space(0, normalize(Qmax))|  
06: return T; 
07:end function 
08: 
09:function HeuristicSubstitution (z, i) returns (z) 
10: if i  c then return NULL; 
11: s  F[i]; 
12:  T  NULL; 
13: Q  ( )m; 
14: for each b B(s) do 
15:       if exist v B(s) satisfy all Ai(b) > Ai(v) then continue; 
16:     z  substitute s with b in z; 
17:     add z to T; 
18:     if exist Ai(b)  Ai then continue; 
19:     Q(z)  QoSMetric(z); 
20:     if Q(z) satisfy Qmax then return z; 
21:     for each Ai  Q 
22:         if Ai(z)  Aimax and Ai  Ai(b) then Ai  Ai(b); 
23:     end for each 
24: end for each 
25: T ComputeDistance(T) 
26: for each z  T 
27:  z  HeuristicSubstitution(z, i + 1); 
28:  if z  NULL return z; 
29: end for each 
30: return NULL; 
31:end function 

 
Algorithm 2 shows the detailed steps of the heuristic 

with dominated branch cut and bound cut. The initial 
invocation is HeuristicSubstitution(O, 1). Notice that all 
set are one-based indexing in this paper. Let T be a local 
temporary set of unsatisfied substitutions. In line 5, 
space(A, B) stands for the cuboid space enclosed by 
planes through point A or B and parallel to coordinate 
surfaces. |A, S| stands for the distance between point A 
and the space S. Code line 0 to line 7 defines a utility 
function ComputeDistance(T) used to sort those 
unsatisfied substitutions by the distance between the QoS 
metrics of each substitutions and the satisfied solution 
space. Notice that the normalization procedure could be 
implemented in variable approaches. 

Fig. 4 shows the solution space and the satisfied 
solution(feasible solution) space of a 2 dimension QoS 
metrics constrained problem. Each axis represents a QoS 
metric. The solution space is the area delimited by the 
dashed lines, which indicate the lower and upper bounds 
for Q1 and Q2 of the Service Orchestration. The satisfied 
solution space is represented by the dotted area. It is the 
portion of the solution space delimited by the lower bound 
and the QoS constraints (Qmax). The function 
ComputeDistance(T) calculate for each substitution in set 
T the distance to the solution, and sort the result in an 
increasing order as a heuristic factor. As shown in Figure 
4, z1 is closer to the satisfied solution space than z2 and 
z3, substitute other Fault Services in z1 would have a 
higher successful probability than z2 and z3. As shown in 
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the algorithm 2, It sorts set T in line 25, and then invoke 
itself recursively in line 27. 

 
 
Figure 4. A conceptual representation of the solution space and of the 

satisfied solution. L(Q1) denotes the lower bound of the Q1 in the 
solution space, while U(Q1) denotes the upper bound, so are L(Q2) and 

U(Q2). z1, z2, z3 denotes substitutions in the solution space. 

 
From line 14 to line 24, we try to substitute the (i)th 

fault service in z, and check whether there is a satisfied 
substitution.  

There are another two optimizations: 
• Dominated Branch Cut 

The idea of Dominated Branch Cut is easy to 
comprehend. It is shown in line 15 in the Algorithm. For a 
given backup service, of which every dimension of QoS 
metrics are lower than another backup service, the given 
backup service and all its subsequent substitutions should 
be cut. 

• Bound Cut 
Bound Cut is designed to cut redundant invocations to 

function QoSMetric(z) by set a Bound Cut Threshold Q. 
The bound is initialized with the m-dimension vector ( )m 
in line 13 and reduced in line 21 to line 23, and it 
represents the unsatisfied QoS metric in every QoS 
dimension. That’s to say, if a QoS of a backup service has 
one or more dimension greater than Q, the substitution of 
this backup service must be an unsatisfied solution and it 
should be skip. This optimization is shown in line 18. 

Now we use the proposed algorithm to compute the 
solution for the Service Orchestration in Fig.3 using the 
data listed in Table I. We take the following as known: 
the average loop count of the WHILE activity in Fig.3 is 
3.0, and the branch probabilities of the IF-ELSE activities 
are both 0.5. 

In order to show how the substitution algorithm works, 
we skip the Fault Services detection phase and assume S1, 
S5, S2 are Fault Services, which have already been 
detected and ordered by their Influence Effects. S3, S4 
run normally and no need to be substituted. We also 

assume that there are only three QoS metrics are took into 
account. Let Qmax = (3.0, 4.0, 2.0).  

TABLE I. QOS METRICS OF ATOM SERVICES AND ITS BACKUP SERVICES 
IN A SERVICE ORCHESTRATION. THE SERVICE ORCHESTRATION IS 

SHOWN IN FIG. 3 

Services QoS Backups QoS 
S1 (1, 1, 1) S1-B1 (0.4532,0.8799,0.4474) 

S1-B2 (0.7102,0.3011,0.6500) 
S1-B3 (0.6767,0.2232,0.6220) 

S2 (1, 1, 1) S2-B1 (0.1710,0.6405,0.4474) 
S2-B2 (0.2584,0.6322,0.2812) 

  S2-B3 (0.6518,0.5516,0.3812) 
S3 (1, 1, 1) - - 
S4 (1, 1, 1) - - 
S5 (1, 1, 1) S5-B1 (0.9875,0.8826,0.0261) 

S5-B2 (0.3793,0.2538,0.8554) 
S5-B3 (0.3317,0.6754,0.4680) 

 
 
The steps in this example are given below: 
• Initial State:  z = (S1, S2, S3, S4, S5), Q(z) = 

(3.5, 4.0, 3.5). Notice each dimension of Q(z) would be 
unequal because different QoS metrics are calculated 
differently by function QoSMetric(z). Bound Cut 
Threshold Q = ( , , ). 

• Step I: z1 = (S1-B1, S2, S3, S4, S5), Q(z1) = 
(2.9532, 4.8799, 2.9474), Q = ( ,0.8799, 0.4474). 

• Step II: Service S1-B2 meet the Dominated 
Branch Cut condition. Substitution (S1-B2, S2, S3, S4, S5) 
and all its subsequent substitutions are cut. 

• Step III: z2 = (S1-B3, S2, S3, S4, S5). Because 
the 3rd QoS attribute of S1-B3 is greater than the 
corresponding attribute in Q (0.6220 > 0.4474), Bound 
Cut meet, no need to calculate Q(z2) at present.  

• Step IV: Compute distances to the solution space 
for both z1 and z2. ComputeDistance(z1) = 1.4211; 
ComputeDistance(z2) = 1.4190. Sort solutions in this 
order: (z2, z1) and start to substitute S5 recursively. 

• Step V: z3 = (S1-B3, S2, S3, S4, S5-B1), Q(z3) = 
(3.1642, 4.1058, 2.1481), Q = (0.9875, 0.8826, 0.0261). 

• Step VI: z4 = (S1-B3, S2, S3, S4, S5-B2). Bound 
Cut meet, no need to calculate Q(z4) at present. 

• Step VII: z5 = (S1-B3, S2, S3, S4, S5-B3). 
Bound Cut meet, no need to calculate Q(z5) at present. 

• Step VIII: Compute distance for z3, z4, z5 and get 
the order (z5, z4, z3). 

• Step IX: z6 = (S1-B3, S2-B1, S3, S4, S5-B1), 
Q(z6) = (2.7497, 3.7463, 1.8718). where Q(z6) < Qmax. 
Solution is found after six substitutions. 
 

C. Probability Branch Cut improvement 
As we mentioned in section II, the assumption was 

made that the following function existed: 

Q1max 

L(Q2) 

z3 

U(Q1) L(Q1) 

U(Q2) z1 

Q2max 

z2 

Q2 

Q1 
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• extern function ProbabilityQoSMetric(z)  
returns p(z), P(z); 

With a certain Service Orchestration z, and with the 
probability density function (pdf) and cumulative 
distribution function (CDF) of each atomic services, the 
function compute the pdf p(z) and CDF P(z) of the 
Service Orchestration z.  

Thus, Let 

 

In formula (7), P denotes the probability of the event: 
z satisfy Qmax. 

According to the principle that extremely small 
probability did not occur in a time, we set a Branch Cut 
Threshold  to a proper small positive value. If P < , we 
consider the a substitution z is not valuable for further 
substitutions and the search branch should be cut.  

Based on the idea above, we improved the function 
ComputeDistance(T) in Algorithm 2 to the function 
ComputeDistanceAndCutBranch(T), which presents in 
Algorithm 3. Notice in the computing of Service 
Orchestration’s pdf and CDF, only not-yet-substituted 
atomic services QoS metrics are treated as random 
variables. The other atomic services QoS values are 
treated as constants or one-point distribution as well. 
 
Algorithm 3: Compute Distance And Cut Branch 
 
01:function ComputeDistanceAndCutBranch(T) returns (T) 
02: for each z  T do 
03:  p(z), P(z)  ProbabilityQoSMetric(z); 

04:  ; 
05:  if P   then  
06:      remove z from T; 
07:  else 
08:      N(z)  normalize(); 
09:  end if 
10: end for each 
11: T  sort T with |N(z), space(0, normalize(Qmax))| 
12: return T; 
13:end function 

D. Adaptive the Service 
After the substitution, if solution were found, we got a 

new Service Orchestration z. The next phase is to 
adaptive the parameters and session state, for which some 
solutions are given by other researchers  and it is out of 
the scope of this paper. 

 

V. SIMULATION EXPERIMENTS 
We implemented the algorithm to conduct 

experiments aimed at evaluating effective and efficient of 
the two substitution algorithms.  

Our experiments still leverage the Service 
Orchestration given in Fig.3. Three QoS metrics are 
consider in our QoS metrics vector: The Response Time, 
the Price of Service and Execution Time. We generate all 
the QoS attributes randomly. Then all the QoS attribute 
yield uniform distribution in (0, 1). The normalization 
function we choose was: 

 
We use the same loop count for the WHILE activity 

the same branch probabilities for the IF-ELSE activities in 
the sample we given in section IV. We still let S1, S5 and 
S2 be the Fault Services, while we increase the count of 
backup services for each atomic services to 5. 

We first set  to 0.02 and Qmax to (3.0, 4.0, 2.5), and 
run both algorithms 100 times. Table II shows the first 10 
results of both The Basic Algorithm (Algorithm 2) and 
Evolved Algorithm. Notice when no solutions are found,  
Search + Dominated Cut + Prob. Cut equals to the 
solution space size. 

 
TABLE II. PART OF SIMULATION EXPERIMENT RESULTS 

Exp. Alg. Result Search 
Dom. 
Cut 

Bound 
Cut 

Prob. 
Cut 

1 Basic Succeed 35 28 23 0 

1 Evolved Succeed 29 24 20 10 

2 Basic No Sol. 124 31 85 0 

2 Evolved No Sol. 54 31 34 70 

3 Basic Succeed 27 36 15 0 

3 Evolved Succeed 15 33 9 15 

4 Basic Succeed 5 111 1 0 

4 Evolved Succeed 5 111 1 0 

5 Basic Succeed 61 93 25 0 

5 Evolved Succeed 31 93 17 30 

6 Basic Succeed 53 41 25 0 

6 Evolved Succeed 33 36 16 25 

7 Basic Succeed 17 37 9 0 

7 Evolved Succeed 17 37 9 0 

8 Basic Succeed 13 107 5 0 

8 Evolved Succeed 13 107 5 0 

9 Basic Succeed 23 10 9 0 

9 Evolved Succeed 11 7 6 45 

10 Basic No Sol. 68 87 29 0 

10 Evolved No Sol. 41 69 20 45 
 
We then carry out experiments under different QoS 

constraints Qmax and different Probability Cut Threshold 
. For each pair of QoS constraints and Probability Cut 

Threshold, we simulated 1000 times with different backup 
services generated randomly. The results are shown in 
Table III. 
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TABLE III. STATISTICS UNDER DIFFERENT  AND QMAX VALUES. ALG. B 

DENOTES BASIC ALGORITHM AND ALG. E DENOTES EVOLVED 

ALGORITHM 

 Qmax 
Has 
Sol. Alg. Search Prob-Cut Error 

0 

2.0 
3.0 
2.0 

No 
(668) 

B 33.63% 0.00% 

- E 12.47% 27.22% 

Yes 
(332) 

B 8.89% 0.00% 

0.00% E 4.52% 6.68% 

2.5 
3.5 
2.5 

No 
(19) 

B 1.23% 0.00% 

- E 0.82% 0.49% 

Yes 
(981) 

B 14.18% 0.00% 

0.00% E 10.92% 4.97% 

0.02 

2.0 
3.0 
2.0 

No 
(674) 

B 34.35% 0.00% 

- E 11.50% 30.09% 

Yes 
(326) 

B 8.45% 0.00% 

0.00% E 4.23% 7.17% 

2.5 
3.5 
2.5 

No 
(14) 

B 0.95% 0.00% 

- E 0.58% 0.43% 

Yes 
(986) 

B 14.80% 0.00% 

0.00% E 11.27% 5.29% 

0.1 

2.0 
3.0 
2.0 

No 
(701) 

B 35.38% 0.00% 

- E 7.83% 40.27% 

Yes 
(299) 

B 8.70% 0.00% 

1.79% E 2.95% 10.45% 

2.5 
3.5 
2.5 

No 
(12) 

B 0.72% 0.00% 

- E 0.45% 0.34% 

Yes 
(988) 

B 14.33% 0.00% 

0.00% E 9.98% 6.96% 

0.2 

2.0 
3.0 
2.0 

No 
(643) 

B 32.75% 0.00% 

- E 3.85% 44.22% 

Yes 
(357) 

B 9.24% 0.00% 

11.80% E 2.41% 17.06% 

2.5 
3.5 
2.5 

No 
(22) 

B 1.42% 0.00% 

- E 0.57% 1.04% 

Yes 
(978) 

B 14.52% 0.00% 

0.70% E 9.37% 9.54% 
 
We draw from our experiments that: 
Both the algorithms are effective. The Basic algorithm 

is efficiency when there is a solution. It can found the 
solution with an average 11.64% searches in the whole 
solution space, while the Evolved algorithm with 
probability branch cut searches only 6.96%. 

In the worst time (No substitution is valid in the 
solution space), the Basic algorithm takes an average 
17.55% searches of the whole solution space. The left 
82.45% are cut by Dominated Cut, which is simple but 
useful. The Evolved algorithm searches only 4.76% in the 
solution space in the worst time in our experiments.  

The Evolved algorithm is efficiency than the Basic 
algorithm. The Evolved algorithm searches less than the 
Basic one by 60.85% in total, especially 72.88% in the 
worst time. Notice that the Evolved algorithm searches no 
more than 12.47% of the solution space in average no 
matter what QoS constraints and Probability Cut 
Threshold are given, or whether there is a solution or not. 

The Evolved algorithm can go wrong and fail to find 
existing solutions when the Probability Cut Threshold  is 
too high. In the experiment, there are average 6.25% 
errors when  is set to 20%, but the probability cut rate 
gains slightly. Notice that when  is set to zero, no 
solution will be lost, and there are still a high cut rate (the 
cut/search ratio is  137.04%). 

When the QoS constraints are loose, the satisfied 
service substitutions are prone to be turn up, and the 
Evolved Algorithm cuts less. In practice, because the 
ProbabilityQoSMetric(z) function consumed additional 
time to the Basic algorithm, the real execute time of the 
two algorithms become closer, and sometimes the 
Evolved Algorithm costs more time than the Basic one. In 
this condition, it is better to select the Basic Algorithm. 

VI. CONCLUSIONS AND FUTURE WORK  
Service Orchestrations enables inter-operable services 

composed through dynamic discovery and substituted at 
runtime without modification of the source code. With the 
growth of web services and QoS-aware registries, 
substitute an atomic service in an SOA application or a 
composite service becomes common.  

This paper introduced a heuristic solution to solve the 
QoS-aware Service Substitution problems. We presented 
such an effective mechanism that, detect and substitute 
fault atomic services in an Service Orchestration to re-
satisfy its QoS constraints efficiently. The approach 
composed in two principal phases: detecting the fault 
atomic services by using hypothesis test and the searching 
procedure for proper substitutions. In the searching phase, 
this paper presented a heuristic algorithm that searches 
along the most possible solution, and then introduced an 
evolved algorithm with Probability Branch Cut, which in 
the experiments reported closer to the former algorithm in 
most times when the satisfied service substitutions are 
prone to be turn up, but when the satisfied solutions are 
rare or even no satisfied solution exists, the latter 
algorithm will be much more effective while there would 
be a sacrifice of the correctness in a tunable probability. 

We are also currently working on an interesting 
extension of the work reported here. The probability cut 
process would be simplified by approximate calculation. 
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In addition, In order to solve the problem
limit, The substitution process could be
multiple passes, and each passes cou
computed in a service substitution cloud,
cloud can be generalized as a part
infrastructures.  
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