

1This paper is supported by the National High-Tech Research Development Program of China (863 program) under Grant No. 2007AA01Z139.

A Closed-loop Mechanism for Service Evaluating and Discovering on the Internet 1

Hao-peng Chen
School of Software

 Shanghai Jiao Tong University
Shanghai, China

e-mail: chen-hp@sjtu.edu.cn

 Guang Yang
School of Software

 Shanghai Jiao Tong University
Shanghai, China

e-mail: allenmacyoung@gmail.com

Can Zhang
School of Software

 Shanghai Jiao Tong University
Shanghai, China

 e-mail: zhangcan05@gmail.com

Abstract—In this paper, we analyze the problems of existing

Service Computing model and propose a closed-loop

mechanism for service evaluating and discovering on the

Internet which is not only compatible with the basic

principles of Service Computing loosely coupled, protocol

independent and location transparent, but also can rank,

classify and recommend services based on their real-time

performance. This mechanism facilitates dynamic service

discovery and substitution which is the core of service

computing since it improves the availability, scalability, and

modifiability of service-based applications.

Keywords-QoS; closed-loop; SOA; evaluation; discovery;

dynamic substitution

I. INTRODUCTION

Service Computing is emerging as a new discipline in
the Distributed Computing field. Thanks to the
development of Web Service technology and the
application of Service-Oriented Architecture (SOA),
Service Computing has made a significant progress in
recent years. As more and more services are available on
the Internet, we have a lot more choices when composing a
service-based application. However, for an application
which is based on different services, the quality of each
service may affect the performance of the whole system.
Therefore, in order to build an application of good quality,
we have to face the following problems:
a) How to discover those services which meet the

application’s functional requirements. This can be

solved by querying the Service Registry which
identifies the functionality of each service by parsing
the description file of the service. In fact, this has
already been supported by a lot of modeling tools.

b) How to discover those services which meet the
application’s QoS requirements. With the
development of Service Computing theory and
technology, there’re more and more services on the
Internet which provide almost the same function. As a
result, developers of SOA applications are more
concerned with the application’s QoS attributes than
ever before. They want faster and better services.

One way to solve this is to extend the description
file of the service to include the Quality of Service
(QoS) attributes of the service. Thus, later we can
obtain the QoS attributes of the service by parsing the
description file. However, this solution has several
limitations. First, the descriptions are not objective.
People who use the service may have quite different
opinions and feelings from the person who writes the
description file. Second, these descriptions are static.
They cannot reflect the runtime performance of the
service. In other words, even if the description claims
that the service is good, it is not persuasive enough for
developers to choose this service.

c) How to automatically substitute service when service
failure occurs. Even if we can ensure that the services
selected can meet the QoS requirements when
building the system, we can never guarantee that the

2009 Fifth International Joint Conference on INC, IMS and IDC

978-0-7695-3769-6/09 $26.00 © 2009 IEEE

DOI 10.1109/NCM.2009.145

1

2009 Fifth International Joint Conference on INC, IMS and IDC

978-0-7695-3769-6/09 $26.00 © 2009 IEEE

DOI 10.1109/NCM.2009.145

1

composition of these services is still the best choice
after running for a long time. As a result, if one
component service fails, a mechanism is needed to
ensure that the running process is not interrupted and
the failed service is quickly and efficiently substituted.

d) How to build a comprehensive closed loop SOA
governance infrastructure, where the service registry
can monitor, rank, classify and recommend services
according to their runtime performance. If we can
enable a closed loop from service publication,
discovery and location, binding and invoking to
service monitoring, evaluation, ranking,
recommendation, the service consumer will get the
most suitable service among those services which
satisfy the functional and QoS requirements of the
system.

In this paper, we show how our Closed-loop
Mechanism solves these problems. In general, our
Closed-loop Mechanism involves three parts: the Intelligent
Service Registry, QoS interceptors of services and service
processes, and the fault-tolerant application front-end. Each
part plays an importance part in the mechanism. First,
Intelligent Service Registry stores the static descriptions
and dynamic feedbacks of registered services and enables
Service Consumer to search and discover services by the
functional and/or QoS requirements. Also, Intelligent
Service Registry evaluates, ranks, and recommends
services according to their real-time QoS attributes. Second,
QoS interceptors of services and service processes make
their real-time QoS attributes describable and feedback
these attributes to the intelligent registry. Third, in our
mechanism, the application front-end has the ability of
dynamic service discovery, dynamic service composition,
and fault -tolerance.

The rest of this paper is organized as follows. Section 2
surveys some related work. Section 3 presents the overview
of our mechanism. Section 4.1 shows the architecture of the
Intelligent Service Registry. Section 4.2 presents how we
design the QoS interceptors of services and service
processes. Section 4.3 shows the framework of application
front-end. Finally, the paper is concluded in Section 5.

II. RELATED WORK

Many service computing models have been proposed by
various companies and organizations in recent a couple of
years. Among these service computing models, the mode
proposed by IBM is the most comprehensive one which
includes two main parts: Service Container Architecture [1]
and Service Data Object [2]. SCA and SDO have been
adopted as specifications by leading companies, such as
Oracle, Sybase, SAP, and Iona. IBM also implements
WebSphere Integration Reference Architecture (WIRA) in
its WebSphere series products. WIRA provides
self-contained service collection and supports integration of
large-scale enterprise application [3]. Also, Microsoft has
released its own SOA solution: BizTalk Server, an
integrated business processing server, which acts as the
backbone of SOA systems. Just like the architecture of
enterprise service bus (ESB), the BizTalk Server contains
adapters, pipelines and business rules engine [4].
Furthermore, Microsoft provided WorkFlow 3.0 and 3.5
in .NET framework as an alternative of BizTalk since
WorkFlow is much more convenient for .NET users
compared with BizTalk [5]. Oracle also has released Oracle
SOA Suite, which aims to be a self-contained
hot-pluggable software suite for building, deploying and
managing SOA systems [6].

These reference models, platforms and tools distinguish
themselves from each other in many ways. However, they
have some common characters, such as they all use Web
Service as the specific mechanism of service
implementation. However, WSDL, the common description
language for Web Service, has its limitation upon
describing QoS attributes. In despite of the prosperity of
different SOA-related products, they still cannot satisfy the
requirements of building a highly available service network
since they cannot describe real-time qualities of services
and lack of the ability of dynamic service substitution.

Many researchers have also worked on the Service
Computing model and related techniques. For examples, in
[7], authors proposed algorithms for web services discovery
and composition by parsing syntactic and semantic service

22

descriptions; in [8], authors adapted A* algorithm to
effectively search Web Services; in [9], authors designed
and developed an agent-based Web Service composition
framework; in [10], authors proposed a Web Service
discovery mechanism based on Quality of Service, which
classifies Web Services according to their QoS descriptions
beforehand. Many other researches can be found in various
journals and proceedings.

However, we find that almost all these researches are
based on static QoS descriptions rather than real-time
performance data. Thus, these QoS descriptions can hardly
reflect the real-time qualities of services. Consequently, the
dynamic service discovery and substitution becomes
impossible and nonsense.

In summary, we need to design a closed-loop
mechanism to dynamically describe and discover services
according to their real-time qualities. This mechanism also
should be compatible with existing service computing
models.

III. RATIONALE OF CLOSE-LOOP BASED MECHANISM

The collaborative framework shown in Figure 1
outlines the closed-loop mechanism for service evaluating
and discovering. It is not supposed to be a replacement of
the existing service computing model. In fact, our
framework extends the existing model by adding new
collaborations, so it is compatible with the existing one.
Figure 1 shows the specific collaborative framework.

Service
Registry

Service
Description

Service
Consumer

Service
Provider

Service

Service
Description

Find

Bind and Invoke

Publish
FeedbackRecommend

Feedback

Figure 1. Collaborative framework of the closed-loop mechanism for

service evaluating and discovering

Figure 1 contains three roles involved in the Service
Computing model: Service Consumer, Service Provider,
and Service Registry. Service Consumer, which can be an
application or a software module, invokes the query
module of the Service Registry to find services it needs,
and then binds and invokes these services with specific
transfer protocols. Service Provider, which is an
addressable entity on the Internet, publishes service
descriptions in the Service Registry, and also receives and
processes Service Consumer’s requests. Service Registry,
which contains all the service descriptions published by
different Service Providers, provides the Service Consumer
with service discovery function. In our model, we simply
inherit these definitions of roles from the existing model,
but we add new collaborations between these roles.

Solid lines in Figure 1 represent collaborations that are
quite similar to the standard collaborations supported by
existing models, including Publish, which means Service
Provider publishes descriptions of its services to make them
known to Service Consumer; Find, which means Service
Consumer queries Service Registry to find and locate
appropriate services; Bind and Invoke, which means
Service Consumer could invoke the services found in the
Find process according to the service descriptions.

In our mechanism, we add some new meanings to these
three collaborations. For Publish, the service descriptions
published will also include the QoS attributes in formal
language to make automated processing possible. For Find,
besides finding services according to functional
requirements, we also support finding services according to
QoS requirements. For Bind and Invoke, we bind Service
Consumer with services which have the same functional
requirements rather than one specific service.

In addition, as you can see in Figure 1, we add three
new collaborations in dotted lines: Feedback and
Recommend between Service Registry and Service
Provider, and Feedback between Service Registry and
Service Consumer. By Feedback between Service Registry
and Service Consumer, we mean that Service Consumer
feedbacks Service Registry with the runtime performance
data of the services it invokes. The feedback is in terms of

33

the experience of Service Consumer with which the Service
Registry can recommend suitable services to Service
Consumer according to the similarity of Service Consumers.
By Recommend, we mean that by collecting statistics of
runtime feedback, Service Registry can evaluate, rank, and
classify services which have the same functionality.
Therefore, Service Registry can recommend services of
better quality to Service Consumer while there are a lot of
services with similar functions. By Feedback between
Service Registry and Service Provider, we mean that
Service Provider feedbacks Service Registry with the
runtime performance data of the services it provides, with
which the Service Registry can evaluate each service
globally. We had once added a Feedback collaboration
between Service Provider and Service Consumer in an
early version of our mechanism. We had considered that
Service Provider also should send feedback to Service
Consumer, which would help Service Consumer
dynamically detect fault and recompose services. Later,
however, we realized that this feedback can be replaced
with the measurement of Service Consumer, and the latter
is much more objective and meaningful for evaluating
qualities of services than the former. Thus, we deleted this
collaboration in newer versions of the mechanism.

In summary, by extending the existing Service
Computing model with new collaborations, the new
framework brings us closer to the goal of high availability
and reliability of Service Computing model. In the
following sections, we will explain each part of this
mechanism in details.

IV. DETAILS OF CLOSED-LOOP BASED MECHANISM

There are three parts in the close-loop based mechanism
for service evaluating and discovering. They are intelligent
service registry, QoS interceptors, and the framework of
application front-end. This section will describe these parts
in detail.

A. The Architecture of Intelligent Service Registry

In our mechanism, since Service Registry takes the
responsibility of collecting real-time performance data of
services, evaluating and ranking services, and
recommending services of good quality, we call it an
intelligent Service Registry. Figure 2 shows the architecture
of the Intelligent Service Registry.

In the architecture shown in Figure 2, Service Registry
exposes four external interfaces, namely Service Publish
Interface, Service Discovery Interface, Registry P2P
Interface, and Service Feedback Interface. Each interface
takes on a different role in the architecture. The Service
Publish Interface is compatible with existing service
registry to enable service providers register their services
into the Registry. With the Service Discovery Interface,
those service-based applications can find and locate
services they are interested in. The Registry P2P Interface
is used for interaction between different service registry
centers for sharing real-time information so as to manage
the whole distributed system. The Service Feedback
Interface is designed for collecting feedback from Service
Customers and Service Providers. In the following
paragraphs, we will use four scenarios to explain the usage
of each interface separately.

Service Discovery Interface

Service
Descriptors
Database

Functionality Search
Engine

Feedback
Database

QoS Search Engine

Request Processor

Service Feedback Interface

Evaluating and
Ranking Service

Service Registry

Registry P2P Interface

Find/Recommend

Collaborative Information Feedback

Service
Providers &
Consumers

Other
Service

Registries

Service
Provider

Service Publish Interface

Publish

Service
Consumers

Figure 2. The architecture of Intelligent Service Registry

44

The first scenario is that a Service Provider registers the
descriptors of its services into Registry by Service Publish
Interface. It is a basic and necessary function for any
service registry, especially for UDDI(Universal Description,
Discovery, and Integration)-complied registry, to allow
service provider to register services. We also designed such
an interface in our registry in order to be compatible with
existing registries. The registering task is accomplished by
saving service descriptors into Service Descriptors
Database.

The second scenario is that a Service Consumer
proposes a service discovery request and the receiving
registry center finds the suitable services without help of
other centers. First, the request is dispatched to the Request
Processor. The Request Processor divides the request into
functional requirements and QoS requirements, which will
be passed to Functionality Search Engine and QoS Search
Engine separately. Second, the Functionality Search Engine
will find a set of services which satisfy the functional
requirements. Third, the QoS Search Engine sorts the
services found by the Functionality Search Engine by the
evaluation and ranking of their QoS attributes, and then
returns the services that match the specific QoS
requirements of the Service Consumer. If the Service
Consumer provides little or no description of its QoS
requirements, the Request Dispatcher will recommend the
most qualified service.

The third scenario makes a nice complement to the
second scenario, namely the situation that the receiving
registry center does not find the suitable services. For a
distributed Service Registry architecture, several registry
centers reside on the Internet, and each registry center holds
a part of the whole registry information. Thus, these
registries form a physical P2P ring and use chord [11]
protocol as the distributing protocol of service descriptors.
Furthermore, there are multiple logic P2P rings built on this
physical P2P ring into each of which a specific quality
attribute, such as performance, availability, reliability, and
so on, is mapped. We have established such a
multiple-logic-ringed prototype of distributed registry and

designed an algorithm for finding service in this prototype
based on multiple QoS constraints.

Therefore, to complete a query request from the Service
Consumer, the service center who receives the request
sometimes has to communicate with others to return a
complete and optimized result. It works like this: after one
registry center receives a query request, it will first search
in its database to find suitable services. If no services are
found, the request will then be passed to other registry
centers by the Register P2P Interface. This procedure won’t
stop until the services which satisfy the functional
requirements and QoS requirements are found. Also, the
registry center where these suitable services are found will
be connected with the Service Consumer and then evaluate
and monitor the runtime performance of those services
chosen by the Service Consumer.

The fourth scenario is about monitoring and collecting
real-time performance of the registered services.
Periodically, feedback on the runtime performance of
services is sent to Service Registry through the Service
Feedback Interface. Then, the feedback will be saved into
Feedback Datebase. The Evaluating and Ranking Service,
periodically refreshes the data about evaluation and rank of
services in the Feedback Database according to the
feedback data received. The data stored in the Feedback
Database includes average response time, average failure
time and so on. In addition, the Evaluating and Ranking
Service also makes validation of newly registered services.
By validation, we mean that the Evaluating and Ranking
Service compares the data collected by testing the service
and the QoS attributes the service declares to be, and
decides whether the descriptions deviate from the real
situation.

Distributed Intelligent Service Registry plays an
important part in our mechanism. The architecture
mentioned here only captures the basic design of the
Service Registry. In fact, the whole architecture is much
more complicated, and further research on the specific
techniques is needed.

We also consider that we can design a separate Quality
Measurement Center (QMC) to evaluate, rank, and classify

55

services according to their qualities, and provide searching
function for Service Consumers. QMC can be a third-party
service search engine since it is independent of any service
registry. We have also established a prototype of QMC,
which need to be integrated with service registry in the
future.

B. QoS interceptors

We have to design QoS interceptors for services in our
mechanism to enable the feedback mechanism. The
feedback is used in two ways. First, Service Registry will
use the feedback data to evaluate and rank services. Second,
service-based applications will monitor the runtime
performance of services used and decide if dynamic
replacement of services is needed according to the feedback
data. Figure 3 shows the QoS interceptor of service with
feedback function.

Service Published Interface

Requests/
Responses

QoS Interceptor

Requests/Responses

Properties

Feedback

Data
Storage

Calculator
Monitor

Service Hosting Environment

Service
Descriptor

Service
Consumers

Service
Registries

Service
Instances

Figure 3. QoS interceptor of service

In the model above, the QoS interceptor is composed of
a Monitor, a Calculator and a lightweight Data Storage. In
the following paragraphs, we will explain the functions of
each part of the model.

The Monitor acts as an interceptor of each service
invocation. At the arrival time of one request, the Monitor
records information like arrival time and calculates the
average request frequency, and then stores them in the Data
Storage. Then, the request is passed to the Service Hosting
Environment which transfers the request and response of
each service invocation on the Internet over some

well-known protocols, like XML-based SOAP message,
into a local call, and dispatch the request to proper Service
Published Interface which is the interface exposed to
Service Consumers. Finally, the request is delivered to
some instance of proper service. After the instance returns
the result, Service Hosting Environment will pack it up into
a standard response package, like a SOAP message, and
send this package to the Service Consumer. At the response
time of the invocation, the Monitor also records
information like execution time, and response time.

The Calculator periodically accesses data in Data
Storage, calculates the QoS attributes, modifies the relevant
part of service descriptor, and then sends the calculated
QoS attributes to Service Registry.

We have designed three kinds of QoS interceptors:
a) Proxy-based interceptor. This kind of interceptors is a

proxy hosting in the environment of its target services.
With this kind of interceptor, Service Consumer
should explicitly invoke the proxy in its code. The
proxy takes the responsibility of delivering
invocations to proper services. That’s to say, Service
Consumer has to modify its code it wants to use this
kind of interceptors. However, this kind of
interceptors is the simplest and most accurate one.

b) AOP-based interceptor. This kind of interceptors also
hosts in the environment of its target services. Unlike
the proxy-based interceptor, Service Consumer does
not have to modify its code explicitly. The AOP
complier interweaves the necessary codes into the
compiled class file to provide functions of interception
and feedback. However, this kind of interceptors is
dependent on the approach of implementation of
target services.

c) Port-based interceptor. This kind of interceptors is
independent of the implementation of target services
and runs as a separate process. It monitors the ports
used by target services, such as 8080 for HTTP and 21
for FTP, and analyzes the packets transported via these
ports. The packets about invocation requests and
responses of target services are intercepted and one of
their copies is saved into Data Storage of interceptor

66

for calculating. This kind of interceptors, however, is
dependent on the type of hosting Operating System.

In summary, each of these three kinds of QoS
interceptors has its advantages and disadvantages. The QoS
interceptor can be built in the service computing based
application front-end or run in the hosting environment of
service. As Service Providers and Service Consumers both
need the QoS interceptor, they may choose the most
suitable one according to their specific requirements.

C. Framework of Application Front-end Based on
Service Computing

The application front-end based on service computing is
supposed to have the ability of dynamic service discovery,
dynamic service replacement, and fault discovery. Since all
the services of a service computing based application are
distributed on the Internet, the application front-end runs as
a mediator and controller of these services. To accomplish
this goal, we propose a framework for the application
front-end in Figure 4.

Service 1 Service m

Application front-end for based on service computing

Dynamic
Composition

Manager

QoS
Interceptor

Decision
MakerDB

Service m+1 Service n
Dynamic
Workflow

Specification

Internet

Service
Manager

Clients

Figure 4. A framework of application front-end based on Service

Computing

In the framework shown above, the application
front-end has two main functions. First, it is responsible for
managing session status and controlling business process.
Second, it determines whether there are some services
should be substituted with other service according to their
real-time quality and executes the substitution.

On one hand, the application front-end accepts client
requests. When one client request arrives, the Service
Manager takes the responsibility of managing the client
session, and processing the client request according to the

Dynamic Workflow Specification. This part is almost the
same as the common service computing model.

On the other hand, the built-in QoS interceptor in the
application front-end keeps on collecting runtime status of
all the services involved in the application in order to
monitor the service endpoint behavior and the QoS
attributes. What’s more, all the data collected are stored in
a database. These data are used later in two ways. First, we
can detect failure in the application with these data. Second,
with these data, the Decision Maker periodically calculates
the end-to-end QoS attributes of the whole system
according to some service measurement model like queuing
model or queuing network model. The Dynamic Workflow
Specification describes the quality requirements about
business processes as well as the business logics. Decision
Maker compares the calculated real-time quality of
business process with the quality requirements described in
Dynamic Workflow Specification. If the QoS attributes no
longer satisfy the requirements, the Decision Maker will
notify the Dynamic Composition Manager that it should try
to find alternative services. To find new services, the
Dynamic Composition Manager interacts with Service
Registry via Service Manager, and then modifies the
Dynamic Process Specification to include the new services.
As a result, following requests will be processed according
to the new specification.

We have designed more than three algorithms for
detecting fault services[12][13][14] and an algorithm for
substituting fault service[15]. We keep researching on the
improvement or these algorithms. In the future, we will
design and implement a prototype of this front-end.

V. CONCLUSION

In this paper, we have presented a close-loop
mechanism for service evaluating and discovering on the
Internet. In particular, we focused on the dynamic features
of the mechanism, such as dynamic service discovery and
composition, dynamic service substitution and fault
detection. What’s more, this mechanism can rank, classify

77

and recommend services according to their real-time
performance.

In summary, we believe that our mechanism has
accomplished the goal of high availability of service-based
application. It is based on and consequently compatible
with the existing Service Computing model. Hence, it can
be integrated and used in the existing Internet environment.

REFERENCE
[1] Added by Graham Barber (IBM), last edited by Graham Barber

(IBM), “Service Component Architecture”, Nov 07, 2007, available
at: http://www.osoa.org/display/Main/Service+Component+
Architecture+Home

[2] Added by Graham Barber (IBM), last edited by Mike Edwards
(IBM) “Service Data Objects”, Dec 21, 2007 , available at:
http://www.osoa.org/display/Main/Service+
Data+Objects+Specifications

[3] S. Simmons, “Introducing the WebSphere Integration Reference
Architecture: A Service-based Foundation for Enterprise-Level
Business Integration”, IBM WebSphere Developer Technical
Journal, Aug. 17, 2005, available at:
http://www-128.ibm.com/developerworks/websphere/techjournal/0
508_simmons/0508_simmons.html.

[4] Daniel Rubio, “BizTalk Server: Microsoft's SOA building block”,
Jan. 24, 2006, available at:
http://searchwebservices.techtarget.com/tip/0,289483,sid26_gci116
1311,00.html

[5] Windows Workflow Foundation Overview, available at:
http://msdn.microsoft.com/en-us/library/ms734631.aspx

[6] Oracle SOA Suite Datasheet, “Oracle SOA Suite”, October 2006,
available at: http://www.oracle.com/technologies/soa/
oracle-soa-suite-datasheet.pdf

[7] Seog-Chan Oh, Hyunyoung Kil, Dongwon Lee, and Soundar R. T.
Kumara, “Algorithms for Web Services Discovery and Composition
Based on Syntactic and Semantic Service Descriptions”,

Proceedings of the 8th IEEE International Conference on
E-Commerce Technology and the 3rd IEEE International
Conference on Enterprise Computing, E-Commerce, and E-Services
(CEC/EEE'06), June 2006, pp. 66 - 66

[8] Seog-Chan Oh, Byung-Won On, Eric J. Larson, Dongwon Lee,
“BF*: Web Services Discovery and Composition as Graph Search
Problem”, Proceedings of the IEEE International Conference on
e-Technology, e-Commerce and e-Service (EEE '05), 29 March-1
April 2005, pp.784 - 786

[9] Bin Li, Xiao-yan Tang, Jian Lv, “The Research and Implementation
of Services Discovery Agent in Web Services Composition
Framework”, Proceedings of the Fourth International Conference on
Machine Learning and Cybernetics, Guangzhou (ICMLC'05), 18-21
August 2005, Volume 1, pp.78 - 84

[10] Yannis Makripoulias, Christos Makris, Yiannis Panagis, Evangelos
Sakkopoulos, Poulia Adamopoulou , Athanasios Tsakalidis, “Web
Service discovery based on Quality of Service”, IEEE International
Conference on Computer Systems and Applications (ICCSA'06),
March 2006, pp.196 – 199

[11] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet
applications. In Proceedings of ACM SIGCOMM, pages.
149–160,San Diego, CA, 2001.

[12] Hao-peng Chen, Cheng Zhang, A Fault Detection Mechanism for
Service-Oriented Architecture Based on Queueing Theory, IEEE
7th International Conference on Computer and Information
Technology 2007 (CIT2007), PP. 1071-1076, 2007.10, ISBN
978-0-7695-2983-7.

[13] Hao-peng Chen, Zhi-yong Wang. A Fault Detection Mechanism for
Fault-Tolerant SOA-Based Applications, The sixth IEEE
International Conference of Machine Learning and Cybernetics
(ICMLC 2007), PP.3777-3781, 2007.8, ISBN 1-4244-0972-1.

[14] Hao-peng Chen, Cheng Zhang, A Queueing-Theory-Based Fault
Detection Mechanism for SOA-Based Applications, IEEE Joint
Conference on E-Commerce Technology (CEC'07) and Enterprise
Computing, E-Commerce and E-Services (EEE '07), PP.265 – 269,
2007.7, ISBN 0-7695-2913-5.

[15] Jiang Ma, Hao-peng Chen, A Reliability Evaluation Framework on
Composite Web Service, IEEE 4th International Symposium on
Service-Oriented System Engineering (SOSE 2008), PP.123-128,
2008.12, ISBN 978-0-7695-3499-2/08.

88

