
A Model for Managing and Discovering Services
Based on Dynamic Quality of Services

Hao-peng Chen*

School of Software, Shanghai Jiao Tong University, Shanghai, China, 200240
Email: chen-hp@sjtu.edu.cn

Can Zhang and Guang Yang

School of Software, Shanghai Jiao Tong University, Shanghai, China
Email: { zhangcan05, allenmacyoung }@gmail.com

Abstract— In this paper, we analyze the problems of existing
Service Computing model and propose a model for
managing and discovering services based on dynamic
quality of services. This model consists of a Quality
Measurement Center (QMC), which receives and analyzes
the feedbacks of dynamic qualities of services to evaluate
and rank the services according their dynamic qualities, and
enables service consumer to search and discover services by
the functional and/or QoS requirements; a QoS Spy, which
feedbacks the real-time dynamic qualities of services to
QMC and processes the fault detection and substitution of
services; a Service Quality Calculator, which calculates the
qualities of composite services based on their atomic services.
With this model, we can evaluate and discover services on
the Internet based on both functional and qualitative
constraints. Meanwhile, this model is compatible with the
basic principles of Service Computing, which are loosely
coupled, protocol independent and location transparent.
This model is the foundation of dynamic service discovery
and substitution, and can improve the availability,
scalability, and modifiability of service-based applications.

Index Terms— service computing; dynamic quality; service
managing; service discovering; feedback

I. INTRODUCTION

With the great development of Web Service
technology and the application of Service-Oriented
Architecture (SOA), Service Computing has been a
hotspot of Distributed Computing and made a significant
progress in recent years. As more and more services are
available on the Internet, we have a lot more choices
when composing a service-based application. However,
for a service-based application which is composed by a
certain number of services, the quality of each service
may affect the quality of the whole system. Therefore, in
order to build an application of good quality, we have to
face the following problems:

The first problem is how to dis cover those services
which meet the application’s functional requirements.

This can be solved by querying the service registry which
identifies the functionality of each service by parsing the
description file of the service. The UDDI (Universal
Description Discovery and Integration) specification has
specified what functions a service registry should have,
such as the function for registering the WSDL (Web
Service Description Language) file of a web service to
the registry, the function for searching a web service in
yellow pages, green pages, and white pages, and the
function for searching a web service by the keyword
given by user [1]. Some UDDI specification complaints
are available, such as Apache jUDDI, which is an open
source Java implementation of UDDI [2]. Since this
problem is not our focus, we suppose that the existing
UDDI implementations can solve this problem well.

The second problem is how to discover those services
which meet the application’s QoS (Quality of Service)
requirements. With the development of Service
Computing theory, technology and tools , there are more
and more services on the Internet. As a result, when a
developer of a SOA application search a service on the
Internet based on a functional requirement, he can find
several candidates. Thus, developers are more concerned
with the quality attributes of services than ever before.
They want better and more suitable services.

One way to solve this problem is to extend the
description file of the service to include the Quality of
Service (QoS) attributes of the service. Thus, later we can
obtain the QoS attributes of the service by parsing the
description file. However, this solution has several
limitations. First, the descriptions are not objective.
People who use the service may have quite different
opinions and feelings from the person who writes the
description file. Second, these descriptions are static.
They cannot reflect the dynamic quality of the service. In
other words, even if the description claims that the
service is good, it is not persuasive enough for developers
to choose this service. The dynamic quality of a service is
composed by a set of attributes which have real-time
status, such as performance, availability, security,
reliability, and so on.

The third problem is how to automatically and
dynamically substitute service when service fault occurs.
Even if we can ensure that the services selected can meet

This paper is supported by the National High-Tech Research

Development Program of China (863 program) under Grant No.
2007AA01Z139.

888 JOURNAL OF NETWORKS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jnw.5.8.888-895

the QoS requirements when building the system, we can
never guarantee that the composition of these services is
still the best choice after running for a long time. As a
result, if one component service fails, a mechanism is
needed to ensure that the fault can be detected, the
running process shall not be interrupted, and the failed
service can be quickly and efficiently substituted. The
faults can be classified into two types: the faults of
functionality and the faults of quality. We focus on the
latter, especially on the faults of dynamic quality.

The fourth problem is how to build a comprehensive
closed loop SOA governance infrastructure, where the
service registry can monitor, rank, classify and
recommend services according to their dynamic qualities.
If we can provide a model for managing and discovering
services based on dynamic quality of services, which
supports service publication, discovery and location,
binding and invoking, monitoring, evaluation, ranking,
and recommendation, a service consumer will get the
most suitable service among all the candidates which
satisfy his functional and QoS requirements.

In this paper, we show how our model solves these
problems. In general, our model involves three parts: a
Quality Measurement Center (QMC), which receives and
analyzes the feedbacks of dynamic qualities of services to
evaluate and rank the services according their dynamic
qualities, and enables service consumer to search and
discover services by the functional and/or QoS
requirements; a QoS Spy, which feedbacks the real-time
dynamic qualities of services to QMC and processes the
fault detection and substitution of services; a Service
Quality Calculator, which calculates the qualities of
composite services based on their atomic services.

The rest of this paper is organized as follows. Section 2
surveys some related work. Section 3 presents the
overview of our model. Section 4.A shows the
architecture of the QMC. Section 4.B presents how we
design the QoS Spy. Section 4.C describes the design of
the Service Quality Calculator. Finally, the paper is
concluded in Section 5.

II. RELATED WORK

Many service computing models have been proposed
by various companies and organizations in recent a
couple of years. Among these service computing models,
the mode proposed by IBM is the most comprehensive
one which includes two main parts: Service Container
Architecture [3] and Service Data Object [4]. SCA and
SDO have been adopted as specifications by leading
companies, such as Oracle, Sybase, SAP, and Iona. IBM
also implements WebSphere Integration Reference
Architecture (WIRA) in its WebSphere series products.
WIRA provides self-contained service collection and
supports integration of large-scale enterprise application
[5]. Also, Microsoft has released its own SOA solution:
BizTalk Server, an integrated business processing server,
which acts as the backbone of SOA systems . Just like the
architecture of enterprise service bus (ESB), the BizTalk
Server contains adapters, pipelines and business rules
engine [6]. Furthermore, Microsoft provided WorkFlow

3.0 and 3.5 in .NET framework as an alternative of
BizTalk since WorkFlow is much more convenient
for .NET users compared with BizTalk [7]. Oracle also
has released Oracle SOA Suite, which aims to be a self-
contained hot-pluggable software suite for building,
deploying and managing SOA systems [8].

These reference models, platforms and tools
distinguish themselves from each other in many ways.
However, they have some common characters, such as
they all use Web Service as the specific mechanism of
service implementation. However, WSDL, the common
description language for Web Service, has its limitation
upon describing QoS attributes. In despite of the
prosperity of different SOA-related products , they still
cannot satisfy the requirements of building a highly
available service network since they cannot describe real-
time qualities of services and lack of the ability of
dynamic service substitution.

Many researchers have also worked on the Service
Computing model and related techniques. For examples,
in [9], authors proposed algorithms for web services
discovery and composition by parsing syntactic and
semantic service descriptions; in [10], authors adapted A*
algorithm to effectively search Web Services; in [11],
authors designed and developed an agent-based Web
Service composition framework; in [12], authors
proposed a Web Service discovery mechanism based on
Quality of Service, which classifies Web Services
according to their QoS descriptions beforehand. In
addition, OWL-S has become a W3C standard for
describing Semantic Web Services [13]. The OWL-based
language is composed of three main parts, namely service
profile, process model, and grounding. It has been praised
for its computer-interpretable semantic markup of
services, but when it comes to describe QoS, OWL-S
only includes general and non-quantitative descriptions
like quality rating in the service profile. Consequently, to
make up OWL-S’s limitations in describing quality of
services, in [14], authors presented OWL-Q, a novel, rich
and extensible ontology-based approach for describing
QoS of Web Services.

We find that most researches are based on static QoS
descriptions rather than dynamic quality information.
Thus, these QoS descriptions can hardly reflect the real-
time status of dynamic qualities of services.
Consequently, the dynamic service discovery and
substitution becomes impossible. Without dynamic
service discovery and substitution, the availability of
service-based applications will be reduced and beyond
the control.

In summary, we need to design a model to dynamically
manage and discover services according to their real-time
status of dynamic qualities. With this model, developers
of service-based applications can find the most suitable
services to build the applications. Meanwhile, the run-
time qualities of the applications can be improved by
dynamic service discovery and substitution. This model
also should be compatible with existing service
computing models .

JOURNAL OF NETWORKS, VOL. 5, NO. 8, AUGUST 2010 889

© 2010 ACADEMY PUBLISHER

III. RATIONALE OF THIS MODEL

The rationale of the model for managing and
discovering services based on dynamic quality of services
can be outlined by the collaborative framework shown in
Figure 1. It is not supposed to be a replacement of the
existing service computing model. In fact, our framework
extends the existing model by adding new collaborations,
so it is compatible with the existing one. Figure 1 shows
the specific collaborative framework.

Figure 1. Collaborative framework

Figure 1 contains three roles involved in the Service
Computing model: Service Consumer, Service Provider,
and Service Registry. Service Consumer, which can be an
application or a software module, invokes the query
module of the Service Registry to find services it needs,
and then binds and invokes these services with specific
transfer protocols. Service Provider, which is an
addressable entity on the Internet, publishes service
descriptions in the Service Registry, and also receives and
processes Service Consumer’s requests. Service Registry,
which contains all the service descriptions published by
different Service Providers, provides the Service
Consumer with service discovery function. In our model,
we simply inherit these definitions of roles from the
existing model, but we add new collaborations between
these roles.

Solid lines in Figure 1 represent collaborations that are
quite similar to the standard collaborations supported by
existing models, including Publish, which means Service
Provider publishes descriptions of its services to make
them known to Service Consumer; Find, which means
Service Consumer queries Service Registry to find and
locate appropriate services; Bind and Invoke, which
means Service Consumer could invoke the services found
in the Find process according to the service descriptions.

In our model, we add some new meanings to these
three collaborations. For Publish, the service descriptions
published will also include the static QoS attributes in a
certain specification, such as in OWL-Q[15], to make
automated processing possible. For Find, besides finding
services according to functional requirements, we also
support finding services according to QoS requirements
which include the constraints on both static and dynamic
QoS attributes. For Bind and Invoke, we bind Service
Consumer with services which have the same
functionality rather than one specific service, that is, we
provide a logic binding but not a physical binding.

In addition, as you can see in Figure 1, we add three
new collaborations in dotted lines: Feedback and
Recommend between Service Registry and Service
Provider, and Feedback between Service Registry and
Service Consumer. By Feedback between Service
Registry and Service Consumer, we mean that Service
Consumer feedbacks Service Registry with the real-time
status of dynamic quality of the services it invokes. The
feedback is in terms of the experience of Service
Consumer with which the Service Registry can
recommend suitable services to Service Consumer
according to the similarity of Service Consumers. By
Recommend, we mean that by collecting statistics of real-
time feedback, Service Registry can evaluate, rank, and
classify services which have the same functionality.
Therefore, Service Registry can recommend services of
better quality to Service Consumer while there are a lot of
services with similar functions. By Feedback between
Service Registry and Service Provider, we mean that
Service Provider feedbacks Service Registry with the
real-time status of dynamic quality of the services it
provides, with which the Service Registry can evaluate
each service globally. We had once added a Feedback
collaboration between Service Provider and Service
Consumer in an early version of our model. We had
considered that Service Provider also should send
feedback to Service Consumer, which would help Service
Consumer dynamically detect fault and recompose
services. Later, however, we realized that this feedback
can be replaced with the measurement of Service
Consumer, and the latter is much more objective and
meaningful for evaluating qualities of services than the
former. Thus, we deleted this collaboration in newer
versions of the model.

In summary, by extending the existing Service
Computing model with new collaborations, the new
framework brings us closer to the goal of high availability
and reliability of Service Computing model. In the
following sections, we will explain each part of this
model in details.

IV. DETAILS OF THIS MODEL

The model for managing and discovering services
based on dynamic quality of services has three parts:
Quality Measurement Center, QoS Spy, and Service
Quality Calculator. This section will describe these parts
in detail.

A. Quality Measurement Center
In our model, since Service Registry takes the

responsibility of collecting real-time status of dynamic
quality of services, evaluating and ranking services, and
recommending services of good quality, we call it an
Intelligent Service Registry, which is an extended UDDI-
complied service registry by adding QMC into it. Figure
2 shows the architecture of the Intelligent Service
Registry.

In the architecture shown in Figure 2, the part in dotted
frame is QMC, which runs either as an independent
center, or as a part of an integrated Intelligent Service

890 JOURNAL OF NETWORKS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

Registry. The Intelligent Service Registry exposes four
external interfaces, namely Service Publish Interface,
Service Discovery Interface, Registry P2P Interface, and
Service Feedback Interface. Each interface takes on a
different role in the architecture. The Service Publish
Interface is an interface of a UDDI-complied service
registry, which enables service providers register their
services into the Registry. The Service Discovery
Interface is an interface of QMC. With the Service
Discovery Interface, those service-based applications can
find and locate services they are interested in. The
Registry P2P Interface is an interface of both UDDI-
complied service registry and QMC. It is used for
interaction between different intelligent service registries
for sharing real-time status of dynamic quality of services
so as to manage the whole distributed system. The
Service Feedback Interface is an interface of QMC,
which is designed for collecting feedback fro m Service
Customers and Service Providers. In the following
paragraphs, we will use four scenarios to explain the
usage of each interface separately.

Figure 2. The architecture of Intelligent Service Registry

The first scenario is that a Service Provider registers
the descriptors of its services into Registry by Service
Publish Interface. It is a basic and necessary function for
any service registry, especially for UDDI-complied
registry, to allow service provider to register services.
The registering task is accomplished by saving service
descriptors into Service Descriptors Database.

The second scenario is that a Service Consumer
proposes a service discovery request and the receiving
registry center finds the suitable services without help of
other centers. First, the request is dispatched to the
Request Processor, which is a part of QMC. The Request
Processor divides the request into functional requirements
and QoS requirements, which will be passed to
Functionality Search Engine and QoS Search Engine
separately. Second, the Functionality Search Engine, a
part of UDDI-complied service registry, will find a set of
services which satisfy the functional requirements. Third,
the QoS Search Engine, a part of QMC, sorts the services
found by the Functionality Search Engine by the

evaluation and ranking of their QoS attributes, and then
returns the services that match the specific QoS
requirements of the Service Consumer. If the Service
Consumer provides little or no description of its QoS
requirements, the Request Dispatcher will recommend the
most qualified service. If QMC runs as an independent
center, then it would only support the service finding
based on QoS constraints .

The third scenario makes a nice complement to the
second scenario, namely the situation that the receiving
registry center does not find the suitable services. For a
distributed Service Registry architecture, several registry
centers reside on the Internet, and each registry center
holds a part of the whole registry information. Thus, these
registries form a physical P2P ring and use chord [16]
protocol as the distributing protocol of service descriptors.
Furthermore, there are several logic P2P rings built on
this physical P2P ring into each of which a specific
quality attribute, such as performance, availability,
reliability, and so on, is mapped. We have established
such a multiple -logic-ringed prototype of distributed
registry and designed an algorithm for finding service in
this prototype based on multiple QoS constraints.

Therefore, to complete a query request from the
Service Consumer, the service center who receives the
request sometimes has to communicate with others to
return a complete and optimized result. It works like this:
after one registry center receives a query request, it will
first search in its database to find suitable services. If no
services are found, the request will then be passed to
other registry centers by the Register P2P Interface. This
procedure won’t stop until the services which satisfy the
functional requirements and QoS requirements are found.
Also, the registry center where these suitable services are
found will be connected with the Service Consumer and
then evaluate and monitor the real-time status of dynamic
quality of those services chosen by the Service Consumer.
The Registry P2P Interface is an interface of both UDDI-
complied service registry and QMC, since both of them
are support P2P structure.

The fourth scenario is about monitoring and collecting
real-time status of dynamic quality of the registered
services. Periodically, feedback on real-time status of
dynamic quality of the registered services is sent to
Service Registry through the Service Feedback Interface.
Then, the feedback will be saved into Feedback Datebase.
The Evaluating and Ranking Service, periodically
refreshes the data about evaluation and rank of services in
the Feedback Database according to the feedback data
received. The data stored in the Feedback Database
includes average response time, average failure time and
so on. In addition, the Evaluating and Ranking Service
also makes validation of newly registered services. By
validation, we mean that the Evaluating and Ranking
Service compares the data collected by testing the service
and the QoS attributes the service declares to be, and
decides whether the descriptions deviate from the real
situation. All the components involved in this scenario
are the proprietary components of QMC which are not
parts of UDDI-complied service registry.

JOURNAL OF NETWORKS, VOL. 5, NO. 8, AUGUST 2010 891

© 2010 ACADEMY PUBLISHER

Distributed Intelligent Service Registry plays an
important part in our model. The architecture mentioned
here only captures the basic design of the Service
Registry. In fact, the whole architecture is much more
complicated, and further research on the specific
techniques is needed.

QMC also can runs as an independent center to
evaluate, rank, and classify services according to their
qualities, and provide searching function for Service
Consumers. If QMC runs as such a third-party service
search engine, it also can coordinate with UDDI-
complied service registry to provide comprehensive
search capability. In this scenario, the P2P ring of QMC
is independent of the one of UDDI-complied service
registry.

 The core of QMC is the hash algorithm for
distributing the feedbacks into a P2P ring of nodes of
QMC. We establish an improved B+ tree as the basis for
accomplishing this distribution. Please see more details of
this algorithm in reference [17].

In QMC, the QoS attributes are classified into two
categories according to their measurability. The attributes
that can be quantificationally evaluated are measurable
QoS attributes. For each attribute of this category, we
evaluate it by a certain algorithm for analyzing the
feedbacks. The attributes that can hardly be measured
accurately are unmeasurable attributes. We use reputation
to represent the general quality of all the unmeasurable
attributes as a whole. We have designed an algorithm for
evaluate the reputation of a service. Please see more
details of this algorithm in reference [18].

Although the load of the nodes of QMC can be
effectively and efficiently reduced due to the P2P
structure of QMC, the load of each node of QMC will be
still very heavy when it is deployed on Internet. We
designed a multiple -level-cached structure of the node of
QMC. In this structure, a cache tree is set up to cache the
result of service queries. Service Consumers are grouped
by their similarity and each group has a corresponding
cache. When a Service Consumer wants to find a service
according to certain constraints, it will send a service
query to the cache of its group at first. If there is a service
which can satisfy the constraints in the cache, this service
will be the query result delivered to Service Consumer.
Otherwise, the query will be sent to an upper level cache.
The experiment has demonstrated this structure can
greatly reduce the load of each node of QMC. The details
of this multiple -level-cached structure are in reference
[19].

QMC is the core of our model. Although it is rather
complex, we have developed a prototype of QMC and
designed the necessary algorithm. We need to
continuously improve the existing implementation.

B. QoS Spy

We design and develop a QoS interceptor, named QoS
Spy, to enable the feedback and dynamic service
substitution. The feedback is used in two ways. First,
QMC will use the feedback data to evaluate and rank
services. Second, service-based applications will use the
feedback data to monitor the real-time status of dynamic

quality of services used and decide if dynamic
substitution of services is needed. Figure 4 shows the
structure of QoS Spy.

Figure 3. The Structure of QoS Spy

In the structure shown in Figure 3, the QoS Spy is
composed of a Monitor, a Calculator and a lightweight
Data Storage. It runs in the hosting environment of
service-based application. In the following paragraphs,
we will explain the functions of each part of the model.

The Monitor acts as an interceptor of each service
invocation. The business components of a service-based
application send service invoking requests and receive
service invoking responses via the Service Invoking
Proxy . Service Invoking Proxy transfers a local call into a
request of service invocation on the Internet over some
well-known protocols, like XML-based SOAP message,
and dispatch the request to target service. After the target
service returns the result, Service Invoking Proxy will
parse the standard response package, like a SOAP
message, into a return value of a local call, and send it to
the business component.

All the requests and responses are intercepted by QoS
Spy, and then forwarded to services or business
components by QoS Spy. At the time of intercepting one
request, the Monitor records information like exact
intercepting time and target service, and calculates the
average request frequency, and then stores them in the
Data Storage. Then, the request is forwarded to the target
service. At the time of intercepting one response, the
Monitor also records information like execution time and
response time, and then forwards the response to business
component.

We have designed and developed three kinds of
interceptors of Monitor:
a) Proxy-based interceptor. This kind of interceptors is

a proxy hosting in the environment of the service-
based application. With this kind of interceptor,
Service Consumer doesn’t invoke services directly.
Instead, it calls the proxy and passes it the
information of the target service, including the URL
of target service, the target operation, and its
parameters. The proxy takes the responsibility of
delivering invocation to proper service. That is,
Service Consumer has to modify its code if it wants

892 JOURNAL OF NETWORKS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

to use this kind of interceptors. However, this kind
of interceptors is the simplest and most accurate one.

b) AOP-based interceptor. With this kind of
interceptors, the service-based application needs to
import the library of this interceptor and compile its
code with an AOP compiler. The AOP complier
interweaves the code of the library of this
interceptor into the compiled class files to provide
functions of interception and feedback. With this
kind of interceptors, we needn’t to modify any code
of the application. However, this kind of
interceptors is dependent on the approach of
implementation of the service-based application.

c) Port-based interceptor. This kind of interceptors is
independent of the implementation of service-based
application and runs as a separate process. It
monitors the ports used by the service-based
application, such as 8080 for HTTP and 21 for FTP,
and analyzes the packets transported via these ports.
The packets about invocation requests and responses
of target services are intercepted and one of their
copies is saved into Data Storage of QoS Spy for
calculating. This kind of interceptors, however, is
dependent on the type of hosting Operating System.

Each of these three kinds of QoS interceptors has its
advantages and disadvantages. Please see more details in
reference [20].

As a part of QoS Spy, the QoS interceptor usually runs
on the hosting environment of service-based application.
As Service Providers and Service Consumers both need
the QoS interceptor, it also can separately run as an
independent tool in the hosting environment of services
to feedback the global real-time status of dynamic
qualities of services.

Since the number of service invocations is rather great,
sending feedback per invocation will sharply increase the
load of QMC. So the feedbacks are needed to be
preprocessed. We designed a circular queue as the data
structure of Data Storage to cache the feedbacks, which
can avoid the leakage of memory [21]. The Calculator
periodically accesses data in Data Storage, calculates the
QoS attributes, and then sends them to Service Registry.
Thus, the amount of feedbacks and the number of times
of communication between QoS Spy and QMC can be
reduced to a reasonable range.

The Calculator also compares the calculated QoS
attributes with the QoS constraints described in the QoS
Requirement Descriptor. The QoS Requirement
Descriptor is edited by developers at the design time to
describe the QoS constraints on the composite services
and whole business flow. If the calculated QoS attributes
cannot satisfy the QoS constraints, the Calculator will
adopt an algorithm to determine whether there is any fault
in the application. We have designed more than three
algorithms for detecting faults. The first One is based on
Queueing Theory [22][23]. In this algorithm, a service is
modeled as a queue. We can detect the fault by compare
the features of the queue with the calculated QoS
attributes. The second one is based on Artificial Neural
Network (ANN) [24]. In this algorithm, we can detect

fault by compare the predicted value generated by ANN
with the calculated QoS attributes. The third algorithm is
based on Markov Chain [25]. In this algorithm, we can
detect fault by compare the predicted value generated by
Markov Chain with the calculated QoS attributes. Each of
these three algorithms has its advantages and
disadvantages. The experiments have demonstrated that
they all take effect on fault detection.

If a fault is detected, the Calculator will determine how
to recover the application from this fault. The Calculator
analyzes the structure of composite service and business
flow to find a suitable solution to service substitution. We
designed an algorithm for evaluating the impact factor of
each component service of a composite service. The
impact factor indicates what extent of impact a
component service imposes on the composite service. It is
important that different QoS attributes should be
calculated differently. We designed an algorithm for
calculating the impact factors [26]. It naturally that we
prefer choose the service with larger impact factor to be
substituted, since the effect of improving QoS is more
positive if we do so.

At beginning, the Calculator chooses the service with
max impact factor to be substituted. The Calculator sends
queries to QMC to find alternative(s). If the alternatives
are more than one, the Calculator will compare the
improving effect of them and determine which one is
chosen. If there is not any improving effect of all the
alternatives which can satisfy the QoS constraints in QoS
Requirement Descriptor, the Calculator will choose the
service with second max impact factor to be substituted,
and so on. If the Calculator find there is no solution to
effectively improve the QoS of composite service by
substituting a single component service, it will try to
substitute two component services, and so on. Finally, the
Calculator will either find a solution to effectively
improve the QoS of composite service by substituting a
certain number of component services, or fail to find a
solution. If the solution is found, the Calculator will
inform the service-based application to modify its
business logic descriptor in order to substitute the
component services. Otherwise, it will inform the service-
based application that the automatic fault tolerance is
impossible and artificial intervention is necessary.

When the Calculator compares the improving effect of
the candidates of a service, it will call the function of
Service Quality Calculator to accomplish this task.

The QoS Spy is a run-time tool and the source of real-
time status of dynamic qualities of services. It is also a
key for ensuring the high availability of service-based
applications.

C. Service Quality Calculator
Service Quality Calculator is a design time tool for

developers to calculate the quality of composite service
based on the qualities of its component services. It also
can be invoked by QoS Spy to search the solution to
service substitution.

To calculate the quality of composite service, we
designed an XML schema to describe QoS constraints ,
named Web Service QoS Constraints (WSQC). It mainly

JOURNAL OF NETWORKS, VOL. 5, NO. 8, AUGUST 2010 893

© 2010 ACADEMY PUBLISHER

has three parts: BPEL (Business Process Execution
Language) Reference, Metric Definition, and Metric
Constraint. Since we use a non-invasive way for BPEL to
describe the constraints rather than extend the BPEL, we
need the BPEL Reference which refers to the BPEL of
composite service. The Metric Definition describes the
features of the QoS attributes, such as the name and
measurability. The Metric Constraint is the specific
constraints on QoS. This is a novel and extensible
ontology-based approach for description of the QoS
constraints [27]. With this approach, developers can
describe the QoS constraints unambiguously.

The Service Quality Calculator classifies the QoS
attributes into three categories: measurable direct
attributes which can be measured directly by QMC,
measurable derived attributes which cannot be measured
directly but can be derived by measurable direct attributes,
and unmeasurable attributes which can only be evaluated
as reputation.

The Service Quality Calculator also classifies the
patterns of the structure of component services into four
categories: sequence pattern, parallel pattern, choice
pattern, and iteration pattern. A developer recursively
applies the four patterns on the component services to
build a composite service.

There are 12 cases generated by orthogonalizing the
three categories of QoS attributes and the four categories
of patterns of structure of component services. For each
case, we designed a specific formula to calculate the
quality of the component services as whole. By
recursively applying the formulae on the component
services, the Service Quality Calculator can calculate
each QoS attribute of a composite service [27].

The Service Quality Calculator sends queries to QMC
to get the qualities of component services. So it is also a
client of QMC. W ith this tool, the developers can choose
the most suitable candidates to build a composite service.
In design time, the developer builds the logic flow of a
composite service at first. Then, he finds all the possible
candidates of each component service by querying QMC.
If the candidates are not unique, the solutions to build the
physical flow of the composite service are also not unique.
The Service Quality Calculator iterates the solution space
and calculates the quality of each solution. Finally, it can
give developer a recommended solution.

The Service Quality Calculator is also invoked by the
QoS Spy at run time. So it can either run as a service, or
be packaged as a library.

V. CONCLUSION

In this paper, we have presented a model for managing
and discovering services based on dynamic quality of
services. In particular, we focused on the dynamic
features of the model, such as dynamic service discovery
and composition, dynamic service substitution and fault
detection. What’s more, this model can rank, classify and
recommend services according to their real-time
performance.

We believe that our model has accomplished the goal
of high availability of service-based application. It is

based on and consequently compatible with the existing
Service Computing model. Hence, it can be integrated
and used in the existing Internet environment.

We have designed and developed all the necessary
parts involved in this model, including Quality
Measurement Center, QoS Spy, and Service Quality
Calculator. The experiments have demonstrated these
tools are effective and feasible.

In future, we will extend our model by adding
semantic based service managing and discovering. Thus,
our model will can not only support fault tolerance on
QoS, but also support fault tolerance on functionality. As
a result, the availability of service-based applications can
be improved more greatly.

ACKNOWLEDGMENT

This paper is supported by the National High-Tech
Research Development Program of China (863 program)
under Grant No. 2007AA01Z139.

REFERENCES
[1] UDDI Spec Technical Committee Draft, Dated 2004.10.19,

http://uddi.org/pubs/uddi_v3.htm
[2] jUDDI 3.0 - Developer Guide, Dated 2009.09.15,

http://ws.apache.org/juddi/
[3] Added by Graham Barber (IBM), last edited by Graham

Barber (IBM), “Service Component Architecture”, Nov 07,
2007, http://www.osoa.org/display/Main/Service+
Component+ Architecture+Home

[4] Added by Graham Barber (IBM), last edited by Mike
Edwards (IBM) “Service Data Objects”, Dec 21, 2007 ,
http://www.osoa.org/display/Main/Service+Data+Objects
+Specifications

[5] S. Simmons, “Introducing the WebSphere Integration
Reference Architecture: A Service-based Foundation for
Enterprise-Level Business Integration”, IBM WebSphere
Developer Technical Journal, Aug. 17, 2005, http://www-
128.ibm.com/developerworks/websphere/techjournal/0508
_simmons/0508_simmons.html.

[6] Daniel Rubio, “BizTalk Server: Microsoft's SOA building
block”, Jan. 24, 2006, http://searchwebservices.
techtarget.com/tip/0,289483,sid26_gci1161311,00.html

[7] Windows Workflow Foundation Overview,
http://msdn.microsoft.com/en-us/library/ms734631.aspx

[8] Oracle SOA Suite Datasheet, “Oracle SOA Suite”,
October 2006, http://www.oracle.com/technologies/soa/
oracle-soa-suite-datasheet.pdf

[9] Seog-Chan Oh, Hyunyoung Kil, Dongwon Lee, and
Soundar R. T. Kumara, Algorithms for web services
discovery and composition based on syntactic and
semantic service descriptions, In Proceedings of the 8th
IEEE International Conference on E-Commerce
Technology and the 3rd IEEE International Conference on
Enterprise Computing, E-Commerce, and E-Services, pp.
66 – 66, June 2006.

[10] Seog-Chan Oh, Byung-Won On, Eric J. Larson, Dongwon
Lee, BF*: web services discovery and composition as
graph search problem, In Proceedings of the IEEE
International Conference on e-Technology, e-Commerce
and e-Service, pp.784 – 786, April 2005.

[11] Bin Li, Xiao-yan Tang, Jian Lv, The research and
implementation of services discovery agent in web services
composition framework, In Proceedings of the Fourth

894 JOURNAL OF NETWORKS, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

International Conference on Machine Learning and
Cybernetics, vol. 1, pp.78 – 84, August 2005.

[12] Yannis Makripoulias, Christos Makris, Yiannis Panagis,
Evangelos Sakkopoulos, Poulia Adamopoulou , Athanasios
Tsakalidis, web service discovery based on quality of
service, In Proceedings of IEEE International Conference
on Computer Systems and Applications, pp.196-199,
March 2006,.

[13] David Martin, et al., OWL-S: Semantic Markup for Web
Services, November 2004,
http://www.w3.org/Submission/OWL-S/

[14] Kyriakos Kritikos, Dimitris Plexousakis, Semantic QoS
Metric Matching, In Proceedings of ECOWS 2006: Fourth
European Conference on Web Services , pp.265-274, 2006

[15] Kyriakos Kritikos and Dimitris Plexousakis, OWL-Q for
semantic QoS-based web service description and discovery,
In Proceedings of the SMR2 2007 Workshop on Service
Matchmaking and Resource Retrieval in the Semantic Web,
pp.123-137, November 2007.

[16] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan, Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of ACM
SIGCOMM 2001, pp. 149–160, August 2001.

[17] Siming Xiong, Haopeng Chen, QMC: a service registry
extension providing QoS support , In Proceedings of 2009
International Conference on New Trends in Information
and Service Science, pp.145-151, July 2009.

[18] Guang Yang, Hao-peng Chen, An extensible computing
model for reputation evaluation based on objective and
automatic feedbacks, In Proceedings of International
Conference on Advanced Language Processing and Web
Information Technology 2008, pp. 585 – 592, July 2008.

[19] Shu-jia Wang, Hao-peng Chen, A web service selecting
model based on measurable QoS attributes of client-side,
In Proceedings of 2008 International Conference on
Computer Science and Software Engineering, pp.385-389,
December 2008.

[20] Cheng Zhou, Haopeng Chen, A mechanism for collecting
and feedbacking the real-time quality of web service, In
Proceedings of the 1st International Conference on
Information Science and Engineering, in press.

[21] Cheng Zhou, Haopeng Chen, An objective and automatic
feedback model for QoS evaluation, In Proceedings of
International Conference on Computer Sciences and
Convergence Information Technology, in press.

[22] Hao-peng Chen, Cheng Zhang, A queueing-theory-based
fault detection mechanism for SOA-nased applications, In
Proceedings of IEEE Joint Conference on E-Commerce
Technology and Enterprise Computing, E-Commerce and
E-Services, pp.265 – 269, July 2007.

[23] Hao-peng Chen, Cheng Zhang, A fault detection
mechanism for service-oriented architecture based on
queueing theory, In Proceedings of IEEE 7th International
Conference on Computer and Information Technology, pp.
1071-1076, October 2007.

[24] Hao-peng Chen, Zhi-yong Wang. A fault detection
mechanism for fault-tolerant SOA-based applications, In
Proceedings of the sixth IEEE International Conference of
Machine Learning and Cybernetics , pp.3777-3781, August
2007.

[25] Jiang Ma, Hao-peng Chen, A reliability evaluation
framework on composite web service, In Proceedings of
IEEE 4th International Symposium on Service-Oriented
System Engineering, pp.123-128, December 2008.

[26] Jinbo Du, Haopeng Chen, Can Zhang, A heuristic
approach with branch cut to service substitution in service
orchestration, In Proceedings of The 4th International
Conference on Frontier of Computer Science and
Technology, pp.59-67, December 2009.

[27] Meng Li, Hao-peng Chen, Nan Wang, Description and
Calculation of Qualities of Composite Services, In
Proceedings of 2009 IEEE Asia-Pacific Services
Computing Conference, pp.385-390, December 2009.

Hao-peng Chen.
Anhui Province, China.
Sept. 4th, 1975.
Ph.D’s degree in computer software and
theory 2001 at Department of Computer
Science and Engineering, Northwestern
Polytechnical University, Xian, China.
Master’s degree in computer application
1999 at Department of Computer Science

and Engineering, Northwestern Polytechnical University, Xian,
China. Bachelor’s degree in computer software 1996 at
Department of Computer Science and Engineering, Hangzhou
Institute of Electronic Engineering, Hangzhou, China.

He is an ASSOCIATE PROFESSOR at School of Software
in Shanghai Jiao Tong University. His research interests include
distributed computing, software engineering, and software
architecture.

Can Zhang.
Jiangsu Province, China.
Dec. 5th, 1987.
Bachelor’s degree in software engineering
2009 at School of Software, Shanghai Jiao
Tong University, Shanghai, China.

Master’s degree in software engineering expected (2012) at
School of Software, Shanghai Jiao Tong University, Shanghai,
China.

She is currently a postgraduate student in School of Software,
Shanghai Jiao Tong University. She got a summer internship
with CRDC (Cisco China Research & Development Center) in
July 2008. And her major research interests are service
computing, software architecture.

Guang Yang.
Shanghai, China.
Mar. 27th, 1984.
Master’s degree in software engineering
2009 at School of Software, Shanghai Jiao
Tong University, Shanghai, China.
Bachelor’s degree in software engineering
2006 at School of Software, Shanghai Jiao
Tong University, Shanghai, China.

He is currently a full time employee with Microsoft (China)
Server and Tools Business as a Program Manager working on
workflow. His major research interests include SOA, business
process management and internet application.

JOURNAL OF NETWORKS, VOL. 5, NO. 8, AUGUST 2010 895

© 2010 ACADEMY PUBLISHER

