
A Queueing-based Model for Performance
Management on Cloud

Hao-peng CHEN1,2, Shao-chong LI1

1 School of Software, Shanghai Jiao Tong University, Shanghai, China
2 School of Computer Science, Georgia Institute of Technology, Atlanta, USA

E-mail: chen-hp@sjtu.edu.cn, lee.shaochong@gmail.com

Abstract—Cloud computing is a new trend for computing
resource provision. Many public clouds are available for
developers to transfer or build web applications on cloud. As a
result, the computing resource scheduling and performance
managing have been ones of the most important aspects of
clouding computing. In this paper, we propose a queueing-based
model for performance management on cloud. In this model, the
web applications are modeled as queues and the virtual machines
are modeled as service centers. We apply the queueing theory
onto how to dynamically create and remove virtual machines in
order to implement scaling up and down. There is no VM
(Virtual Machine) live migration involved in this model which
makes it much simpler than some existing models. The result of
case study has shown this model is effective to scaling up and
down. The more precise measurement and analysis of this model
will be done in future.

Keywords- performance management; cloud; queueing

I. INTRODUCTION (HEADING 1)
Cloud computing has been an emerging technology for

provisioning computing resource and providing infrastructure
of web applications in recent years. Cloud computing greatly
lowers the threshold for deploying and maintaining web
applications since it provides infrastructure as a service (IaaS)
and platform as a service (PaaS) for web applications [1].
Consequently, a number of web applications, particularly the
web applications of medium and small enterprises, have been
built into a cloud environment. Meanwhile, leading IT
companies have established public commercial clouds as a new
kind of investment. For example, Amazon Elastic Compute
Cloud (Amazon EC2) is a web service that provides resizable
compute capacity in the cloud. It is designed to make web-scale
computing easier for developers [2]. Google App
Engine enables enterprises to build and host web applications
on the same systems that power Google applications. App
Engine offers fast development and deployment; simple
administration, with no need to worry about hardware, patches
or backups; and effortless scalability [3]. IBM also provides
cloud options. Whether you choose to build private clouds, use
the IBM cloud, or create a hybrid cloud that includes both,
these secure workload solutions provide superior service
management and new choices for deployment [4]. We even can
establish a private cloud with Ubuntu Enterprise Cloud to offer
immediacy and elasticity in the infrastructure of web
applications [5]. In summary, both of the numbers of cloud

applications and providers have kept gradually increasing for a
couple of years. As a result, computing resource scheduling
and performance managing have been ones of the most
important aspects of clouding computing.

Among the top 10 obstacles of cloud which the report [1]
proposes, the obstacle 8, Scaling Quickly, is our focus. When a
number of web applications are deployed into a cloud
environment, dynamical allocating the computing resource to
web applications on demand has a positive effect not only on
the performance of web applications, but also on the energy
saving. The solution to eliminate this obstacle is to
automatically scale quickly up and down in response to load in
order to save money for web applications providers by
optimizing the requesting of computing resource, but without
violating service level agreements [1]. Meanwhile, the cloud
providers also can save money by optimizing the allocation of
computing resource and saving energy, since the cloud
providers needn’t to provide excessive active computing
resources. To achieve the aim of dynamic scaling, we need
proper tools and models to diagnose the runtime requirements
of web applications.

Since there is not any standard model has been widely
accepted by industry yet, scaling up and down is an open issue
for researchers. The cloud providers, such as Amazon, IBM,
and Google have their own mechanisms which are commercial
ones and inherited from their existing proprietary technology.
The researchers from universities and institutes also have
proposed some models and methods. For example, in [6], the
author introduces many outcomes on predicting system
performance based on machine learning obtained in RAD lab
of University of California at Berkeley. The existing solutions
to scaling up and down are designed via various techniques,
such as statistical methods, machine learning, and queueing
theory.

Aware of the advantages and disadvantages of these
solutions, we propose a queueing-based model for performance
management on cloud. In this model, the web applications are
modeled as queues and the virtual machines are modeled as
service centers. We apply the queueing theory onto how to
dynamically create and remove virtual machines in order to
implement scaling up and down. The remainder of the paper is
structured as follows. Section II briefly summaries the related
works; Section III gives the principle of our model; Section IV
describes the mechanism for scaling up and down; Section V

This paper is supported by the Project of Daystar of Shanghai Jiao Tong
University.

- 83 -

shows the case study of our model; and conclusion in Section
VI.

II. RELATED WORK

Performance management on a cluster, an issue much
similar to performance management on cloud, has been
adequately discussed in past. For example, in [7], the authors
aimed to online response time optimization of Apache Web
Server and analyzed the advantages and disadvantages of
Newton’s Method, fuzzy control, and heuristic method for
optimization. But the performance management on cloud
differs from the one on a cluster mainly in the following two
aspects:

1. Since the web applications run into the virtual
machines on cloud, such as Xen [8] and KVM [9],
they are allowed to be heterogeneous. On the contrary,
the web applications deployed on a cluster must be
homogeneous due to the unified software platform on
each node.

2. It is via virtual machine that the web applications
share computing resource on cloud. It is much more
complex than the mechanism of resource sharing on a
cluster which has no intermediary.

Aware of the differences between the performance
management on cloud and on a cluster, many researchers study
on this issue. For example, RAD Lab of Berkeley focuses on
the pervasive and aggressive use of statistical machine learning
as a diagnostic and predictive tool that would allow dynamic
scaling, automatic reaction to performance and correctness
problems, and generally automatic management of many
aspects of these systems. In [10], Kernel Canonical Correlation
Analysis (KCCA) is used to predict the execution time of
MapReduce jobs in a data-intensive system running on a cloud.
The reason why KCCA is used has been given in their earlier
work published in [11].

In [12], the authors proposed a Queueing Theory based
method to predict the performance of the service exposed by
the cloud. Although the correctness of the method has been
demonstrated by some experiments and simulations, the model
they set up is quite simple due to its presumption that a cloud
only exposes one service. Actually, the authors only propose a
generalized method to analyze and predict the performance of a
service. They did not consider the special context of Cloud
Computing. In our opinion, the structure of a cloud is like a
multiple Queues but not a single Queue.

It is inevitable that there is random error between predicted
status and real-time one though prediction is a feasible and
effective way to optimize the usage of computing resource. So
prediction is a risky method which is possible to result in a
serious situation. Moreover, the predicting needs enough
samples to be learned which is not available for new deployed
applications. Thus, the initial resource provisioning is hardly
done by prediction. So some researchers focus on the real-time
status based performance management. In [13], the authors
propose a packing algorithm based method to minimize the
number of running machines, so as to save energy. It can be a
reference model for dynamical scheduling. Once a VM is

shutdown, a VM is started, or a VM is resized, the method will
rearrange the locations of all the VMs by live migration to
minimize the number of running machines and shutdown the
unnecessary machines. But it has two obvious flaws. The first
one is excessive cost of live migration. Since the packing
algorithm is used, in the extreme situation, almost all the VMs
need to be migrated. On the one hand, live migration itself is a
time-cost task so that people shutdown the VM and start a new
VM instead in practice. On the other hand, the number of the
VMs needs to be migrated can be over control. The second
flaw is that the over-provision approach they use is a waste. In
order to avoid the frequent VM resizing events, the authors set
a configurable parameter α . When a VM requires the
computing power of P, they allocate (1+α)P power to the VM.
Thus, when the VM resizing is in the range from (1-α)P to (1+
α)P, it does not trigger a resizing event. The computing power
is wasted by the factor α . Moreover, if the P requested by a
VM is greater than all power of a single machine, it is difficult
to allocate the power to the VM. However, this model could be
a reference to dynamical scheduling.

VMs joining and leaving is involved in scaling up and
down. The key is to make all the VMs of an application know
the changes of membership. In [14], a membership scheme is
designed to manage membership discovery & management on
EC2. This scheme use Amazon announced two new features—
Availability Zones & Elastic IP Addresses—to achieve their
aims. Either membership of application tier or membership of
database tier is can be discovered and managed dynamically,
and the load balancer can rescheduling tasks according to the
current membership. This scheme ensures that the member
joining and leaving in scaling up and down has not negative
impact on task scheduling.

There are still many other researches on the performance
management on cloud. All the researches can be roughly
divided into two kinds: by prediction and by real-time status.
As our analysis, they all have pros and cons. We design a
model based on the real-time status of web applications which
more exactly captures the structure of cloud and avoids
frequently live migration of VM.

III. PRINCIPLE OF THE MODEL

A. The queue model of web applications
Performance, to put it simply, is how quickly the web

application can respond to a given logical operation from a
given individual user. Response time is a measure of the
amount of time the application consumes while processing a
client request [15]. Since the response time is an important
measure of application performance, we can use it to determine
whether the specified web application violates the service level
agreements. In a service level agreement, such as a WSLA
agreement [16], the accepted range of response time will be
described as an item.

To capture the structure of web applications on cloud, we
figure out that the process of client requests in a single web
application has the following features:

- 84 -

1. The interarrival times between any two successive
client requests are independent of each other and have
a common probability distribution.

2. The clients will receive responses if requests are
processed by web application in time, or receive
exception(s) due to the timeout of waiting. They even
can abort the requests as their wills.

3. Because a web application usually exposes multiple
services to the users, the service time needed for a
request is dependent on the real-time status of the
application and the service it invokes. All the service
times have identically probability distribution.
Furthermore, they are independent of interarrival
times.

4. The client requests can be served in many possible
orders, such as first come first served, last come first
served, shortest processing time first, random order,
round robin, and so on. However, the first come first
served is still the predominant order.

5. The cloud platform can create a single VM or a cluster
of VMs to process the client requests. Thus, there are
several possible kinds of application capacity.

6. Since the cache(s) or buffer(s) of the VM(s) of an
application is finite, the number of waiting requests is
limited. It means if the waiting room of an application
is fully occupied, when extra requests arrive at this
service, they would be lost.

The above six features have shown that the model of client
requests processing is a typical queueing model, so we can
resort to queueing theory to capture the structure of web
applications.

Figure 1. Queue model of web application on cloud

When a web application is deployed on a cloud, the Cloud
Controller, as the portal of cloud, will establish a queue for it to
hold the client requests. Meanwhile, a certain number of VMs
will be created by Cloud Controller on Cloud Node(s). The
number of initially created VMs can be specified by service
level agreement or by empirical value in case of no constraint
on it in service level agreement. The number of live VMs at
runtime will vary with the dynamical creation and remove of
VMs. All the VMs of a web application can run on either a
single Cloud Node or multiple Cloud Nodes, and each of them

has been allocated with the same computing resource.
Regardless the physical location of VMs, there is an instance of
the web application running into each of them. As a result, all
the VMs compose a cluster and process the requests in the
corresponding queue.

When a client sends a request to a web application on cloud,
the request will be sent to the Cloud Controller. The dispatcher
in Cloud Controller forwards the request to the queue of the
target web application. The instances of the target web
application running into VMs act as service centers to process
the requests in the queue.

For example, in Figure 1, web application A has n instances
each of which is running into a VM. Similar to A, web
application B has m instances. All the VMs of A and B can run
on a single Cloud Node or run on multiple Cloud Nodes, and
they compose two clusters. Queue A and Queue B on Cloud
Controller respectively associate with web application A and B.

The queue type is determined by its performance
measurements, such as the probability distribution of the
waiting time and the sojourn time of a request, the probability
distribution of the amount of work in the application, and the
probability distribution of the busy period of the application
[17]. As most web applications, in a web application on cloud,
the number of client requests and the service time are random
variables, so we can consider they has Poisson or exponential
distribution. By convention, we use M to respectively indicate
the number of requests and the service time. Since each web
application on cloud has one or multiple instances running into
VM(s), and each instance can serve a certain number of
requests. Thus, the number of the requests concurrently
processed by a web application can be determined. By
convention, we use S to indicate this number. For any
application, its capacity is limited. So it has the upper limitation
of the number of clients they can serve. This upper limitation is
the sum of S and the number of waiting requests the queue can
hold. By convention, we use k to indicate the capacity. Thus,
the queue model for the web application on cloud is abstracted
as an M/M/S/k one.

B. Computing resource management on cloud
Since the web applications are modeled as queues and the

VMs are modeled as service centers, we can dynamically
create and remove VMs according to the number of necessary
service centers in order to scale up and down. To achieve this
aim, we give the design as Figure 2.

Figure 2. Queue model of web application on cloud

Cloud Node I

Queue A

VMA1 VMA2

Clients
Clients

Requests/

Responses

Queue B

VMB1

Cloud Controller

Cloud

Dispatcher

Cloud Node I

VMA3 VMB2 VMB3

Cloud Node n

VMAn VMBm

Data
Storage

Web Application A on Cloud

Queue A

VMA1

VMAn

Requests/

ResponsesClients
Clients

Web Application B on Cloud

Queue B

VMB1

VMBm

Requests/

Responses

Cloud Controller Cloud Nodes

Cloud

Requests/

Responses

Dispatcher

- 85 -

Firstly, we allocate same amount of computing resource to
all VMs. Since all the Cloud Nodes usually have the same
hardware configuration, we can specify a fix hardware
allocation policy to all VMs. For example, we specify that each
Cloud Node will run at most three VMs. Thus, each VM will
get one third computing resource of a Cloud Node, including
CPU, memory, hard disk, and net bandwidth. This policy for
resource allocation can effectively avoid wasting computing
resource. Meanwhile, it guarantees that each service center of a
web application will be identical. When a new service center
need to be create, we just need to find a Cloud Node which has
spare resource and create it without worry about resource
overprovision or underprovision. For example, in Figure 2, if
we have to create a new VM for application A, we can create it
on Cloud Node n since it has spare resource. After we create
the new VM, the resource on Cloud Node n will be totally
allocated to VMs without any wasting. When a VM is removed,
the resource it releases is exactly enough for creating a new
VM. With this policy, when the performance of a web
application is not acceptable, the new VM(s) will be created to
improve it and no live migration of VM is necessary.

Secondly, the response time of each request and the length
of each waiting queue will be recorded into data storage by
dispatcher of Cloud Controller. Note that the sojourn time of a
request is the waiting time plus the service time, which equals
to response time. Because the Cloud Controller is the portal of
cloud, all the requests will be sent to dispatcher and forward to
queues, and all the responses will be sent back to clients via
dispatcher. As a result, the dispatcher can record the response
time exactly. When requests arrive at cloud, the dispatcher
intercepts all of them, records their arrival times into the data
storage, and updates the number of new arriving requests
during the unit time in the data storage. Subsequently, the
dispatcher dispatches the requests to the queues. When a
response is generated and sent back to client, the dispatcher
intercepts it again to read the departure time. Subsequently, the
dispatcher updates the number of departing requests during the
unit time in the data storage. Lastly, the response is delivered to
client.

Thirdly, the Cloud Controller periodically checks whether
the dynamical creation and remove of VM(s) is necessary. If a
web application reaches its steady state, its expected number of
requests waiting for serving, expected waiting time of requests,
and expected sojourn time of requests will be steady.
Furthermore, the distribution of these variables is independent
of time; it means in any period or at any time, the distribution
of these variables is the same, and the values of these variables
before time t would not have impact on the values of these
variables at time t. This property is called memoryless property.
Thus, when each period expires, the Cloud Controller will
accesses the data storage to retrieve the records and calculates
the necessary number of VMs according to the performance of
web application. Then the Cloud Controller will create or
remove VMs and empty the data storage. Since the data stored
in data storage is not very much, and it needs to be accessed
frequently, it should be designed as an in-memory object, such
as an in-memory database. The algorithm for determining how
to dynamically create and remove VMs will be described in
Section IV.

IV. MECHANISM FOR SCALING UP AND DOWN

A. Dynamical creation and remove of VMs
The template is designed so that author affiliations are not

repeated each time for multiple authors of the same affiliation.
Please keep your affiliations as succinct as possible (for
example, do not differentiate among departments of the same
organization). This template was designed for two affiliations.

We require the web application providers describe expected
number of requests waiting for serving, expected waiting time
of requests, and expected sojourn time of requests in Service
Level Agreement as the constraints on performance.
Meanwhile, they also need to specify an acceptable
nonnegative error e and an acceptable number of successive
failed periods n.

The Cloud Controller periodical checks the data storage and
determines whether the dynamical creation and remove of VMs
is necessary. Usually, there are multiple web applications
deployed on cloud. The Cloud Controller will iteratively
process all the web applications. For each application, the
Cloud Controller calculates the mean number of requests
waiting for serving, the mean waiting time of requests, and the
mean sojourn time of requests in a period which contains
certain amount of unit time, and compare these real-time
variables with the expected variables specified in Service Level
Agreement. There must be error between these two set of
variables, especially we focus on the error between the
expected sojourn time and the real-time mean sojourn time. If
the error exceeds e for n times, we consider the web application
deviates its steady state, and as a result, it cannot satisfy the
performance requirement any longer. Then the necessary
number of VMs is calculated and the VMs are dynamically
created. If the error doesn’t exceed e for 2n times, we consider
the web application reaches its steady state, and maybe it has
been overprovisioned. Then the necessary number of VMs is
calculated and the VMs are probably dynamically removed.

The periodical process is as the following pseudo-code:
1 function Scaling_Up_Down (Collection apps)
2 // apps: all the web application deployed on cloud
3 Static float e, expectedSojournTime;
4 // e: an acceptable nonnegative error between expected
5 // sojourn time and real-time mean sojourn time.
6 // expectedSojournTime: the expected sojourn time
7 // specified in Service Level Agreement.
8 Static int n;
9 // n:an acceptable number of successive failed periods.
10 Static int timesG, timesB = 0;
11 // timesG: the number of successive successful periods
12 // timesB: the number of successive failed periods
13 for each application in apps
14 Collection his = getHistory(application);
15 // his: history records of application in data storage
16 int meanSojournTime = CalculateSojourn(his, S);
17 // meanSojournTime: mean sojourn time in a period
18 // S: the number of instance of application
19 if (meanSojournTime - expectedSojournTime) > e
20 timesB++;
21 timesG = 0;

- 86 -

22 if timesB > n
23 int number = CalculateVMs(application, 1);
24 // Calculate the necessary number of VMs
25 CreateVMs (number - existing);
26 //existing: the number of existing VMs of application
27 endif
28 else
29 timesB = 0;
30 timesG ++;
31 if timesB > 2n
32 int number = CalculateVMs(application, -1);
33 // Calculate the necessary number of VMs
34 RemoveVMs (existing - number);
35 //existing: the number of existing VMs of application
36 endif
37 endif
38 endfor
39 endfunction

The functions CreateVMs() and RemoveVMs() are system
functions provided by cloud platform to create and remove
VMs. The function getHistory() is provided by the data storage
to retrieve data. The function CalculateSojourn() and
CalculateVMs() will described in Section IV.B.

B. Queueing algorithm for calculating necessary VMs
The CalculateSojourn() is periodically invoked by

dispatcher to calculate the real-time sojourn time. We set the
unit time as 1 second, so in every second, the dispatcher
records the number of requests arriving in the web application,
indicated as i� ; the number of requests departing from each

instance of the application, indicated as ji,� . For every period,
such as every 100 seconds, we calculate the real-time mean
sojourn time as the following pseudo-code:
1 function CalculateSojourn (Collection his, S)
2 // his: history records of application in data storage
3 // S: the number of instance of application
4 get all i� and ji,� from his;

5 // the value range of j is from 0 to S
6 float� = average(i�)

7 // calculate the average number of requests arrived
8 float � = weightedAverage(ji,�);

9 // calculate the weighted average number of requests
10 // departing from each instance of application.
11 // 0P : the probability of the queue with length of 0

12 for j =1 to k
13

jP = Queueing(� ,� , 0P ,j);

14 // jP : the probability of the queue with length of j

15 endfor
16 int L = Sum(j* jP , k);

17 // L: the real-time mean length of queue
// k: the value range of j is from 0 to k

18 � �ke P�� 1��

19 // e� is effective request arrival rate

20
LW

e�
1

�

21 //W: the real-time sojourn time
22 return W;
23 endfunction

The function Queueing() is a standard function provided by
queueing toolkit to calculate the probabilities of the queue with
length from 0 to n.

The function CalculateVMs() is used to calculate the
necessary VMs. Its process is as following pseudo-code:
1 function CalculateVMs (App application, Flag f)
2 // application: the target for calculating
3 // f: a flag. 1 indicates need more VMs, -1 indicates need
4 // less VMs.
5 int existing = getExistingVMs(application);
6 //existing: the number of existing VMs of application
7 for (i = existing; i > 0 and i <= limit; i=i+f)
8 // limit: the upper limitation of the number of application
9 // which can be specified in Service Level Agreement
10 float W = CalculateSojourn(his, i)
11 // calculate the sojourn time when application has i
12 // instances
13 if abs(meanSojournTime - expectedSojournTime) < e
14 break;
15 endif
16 endfor
17 return number;
18 endfunction

The result returned by CalculateVMs() is the minimum of
the number of VMs which can guarantee the performance of
web application described in Service Level Agreement.

V. CASE STUDY

Since we are studying on service registry which is deployed
as a cloud application, we shared the experimental environment
with it. The shared experimental environment is a 7-computer
environment in which we runs one Cloud Controller, two
Cluster Controllers, and four Cluster Nodes. All the computers
have same hardware configuration. The main features are:

� Product: Dell Inc. Inspiron 531

� CPU: AMD Athlon(tm) 64 X2 Dual Core Processor
5200+

� Memory: DIMM 667 MHz 1GiB * 2

� Hard Drive: Seagate ATA Disk 232GiB (250GB)

We set up a policy that there are at most 3 VMs running on
each computer and each VM will obtain one third computing
resource of a computer.

We deployed two simple web applications on the
experimental environment. The first one is an online bookstore,
which provides services for logging in, browsing book, and
selling book. This book store has 1,000 kinds of books and 500
registered users. The second one is an online box office, which
provides services for logging, browsing tickets information,

- 87 -

and booking tickets. This box office has 500 kinds of tickets
and 1,000 registered users.

For simplification, we initialized these two applications as
M/M/3/3 model. So we create 3 VMs on Cloud Node I for
online bookstore and 3 VMs on Cloud Node II for online box
office.

We simulate 200 users to randomly send requests to the two
web applications to invoke the services they provide. We
record the number of requests arriving in the web
applications i� and the number of requests departing from the

applications ji,� every second for 2,000 seconds. We find the
two applications have close performances.

We set the same parameters for both of the applications,
including the lower performance of them as the acceptable
performance, a tiny value, 50 ms, as acceptable error, 100
seconds as the length of period, and 5 as the acceptable
successive failed periods. Then, we simulate 150 users to send
requests to the online Bookstore and 50 users to send requests
to the online Box Office. After 6-8 periods in experiments, a
new VM is created on a new Cloud Node, indicated as Cloud
Node III, for running a new instance of online Bookstore.

Then, we reset the experiment to the beginning
configuration, that is, the 200 users randomly send requests to
the two web applications. We can find after 6-9 periods in
experiments, a VM of online Bookstore will be removed. The
removed VM may be on Cloud Node I or Cloud Node III when
we repeat the experiment.

The result of experiment has shown that our queueing
based model is effective to scale up and down the web
applications on cloud and no VM live migration is involved.
However, our experiments are not enough to precisely measure
the effect of our model on usage of computing resource,
because the hosting environment we establish is an
experimental one which is quite different from the true cloud
platform and there is no real user to access it. As a result, we
have no enough valid data to do more analysis. The concurrent
users we simulate are not massive enough to check the
efficiency of our model. After all, when the amount of
concurrent users is not massive enough, the improvement of
performance is not notable. So in next work, we will deploy it
into a commercial environment and precisely measure and
analyze it.

VI. CONCLUSION

In this paper, we propose a queueing-based model for
performance management on cloud. In this model, the web
applications are modeled as queues and the virtual machines
are modeled as service centers. We apply the queueing theory
onto how to dynamically create and remove virtual machines in
order to implement scaling up and down. There is no VM
(Virtual Machine) live migration involved in this model which
makes it much simpler than some existing models.

The result of experiment has shown that our queueing
based model is effective to scale up and down the web

applications on cloud and no VM live migration is involved.
However, our experiments are not enough to precisely measure
the effect of our model on usage of computing resource. So in
next work, we will deploy it into a commercial environment
and do more precise measurement and analysis.

ACKNOWLEDGMENT

As a visiting scholar of Georgia Institute of Technology,
Hao-peng Chen thanks Georgia Institute of Technology and
Prof. Ling Liu, a Professor of College of Computing at Georgia
Institute of Technology, for their supports.

REFERENCES

[1] Michael Armbrust, Armando Fox, et.al, Above the Clouds: A Berkeley
View of Cloud Computing,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf,
2009

[2] Amazon, Amazon Elastic Compute Cloud (Amazon EC2), available at:
http://aws.amazon.com/ec2/, 2010

[3] Google, Google App Engine, available at :
http://code.google.com/intl/en/appengine/, 2010

[4] IBM, IBM Smart Business Cloud Computing, available at:
http://www.ibm.com/ibm/cloud/, 2010

[5] Ubuntu, Private cloud: Ubuntu Enterprise Cloud, available at:
http://www.ubuntu.com/cloud/private, 2010

[6] Archana Sulochana Ganapath, Predicting and Optimizing System
Utilization and Performance via Statistical Machine Learning,
Technical Report No. UCB/EECS-2009-181, available at:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-
181.html, December 17, 2009

[7] Xue Liu, Lui Sha, Yixin Diao, Steven Froehlich, Joseph L. Hellerstein,
and Sujay Parekh, Online Response Time Optimization of Apache Web
Server, IWQoS 2003, LNCS 2707, pp. 461 478, 2003.

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew Warfield. Xen and the Art
of Virtualization, in Proc SOSP’03, October 19–22, 2003, Bolton
Landing, New York, USA.

[9] Kernel Based Virtual Machine, abailable at: http://www.linux-
kvm.org/page/Main_Page, 2010

[10] Ganapathi, A., Y. Chen, A. Fox, R. Katz, and D. Patterson, Statistics-
Driven Workload Modeling for the Cloud, in Proc Workshop on Self-
Managing Database Systems (SMDB), 2010

[11] A. Ganapathi, H. Kuno, U. Daval, J. Wiener, A. Fox, M. Jordan, and D.
Patterson, Predicting Multiple Performance Metrics for Queries: Better
Decisions Enabled by Machine Learning, in Proc International
Conference on Data Engineering, 2009.

[12] K. Xiong and H. Perros, Service performance and analysis in cloud
computing, ICWS 2009, in Proc International Workshop on Cloud
Computing, July, 6-10 (2009), LA.

[13] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, Liang Zhong,
EnaCloud: An Energy-saving Application Live Placement Approach for
Cloud Computing Environments, in Proc 2009 IEEE International
Conference on Cloud Computing, 2009

[14] Afkham Azeez , Autoscaling Web Services on Amazon EC2,
http://people.apache.org/~azeez/autoscaling-web-services-azeez.pdf

[15] Ted Neward, Effective Enterprise Java, Addison Wesley Professional,
Boston, August 26, 2004

[16] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, Richard
Franck, Web Service Level Agreement (WSLA) Language Specification,
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf,
2003/01/28

[17] Ivo Adan, Jacques Resing, Queueing Theory, February 28, 2002,
available at: www.win.tue.nl/~iadan/queueing.pdf

- 88 -

