
SRMC: A Model for Web Services Registry with Multilevel Caches

Hao-peng Chen1,2, Shu-jian Wang1, Shao-chong Li1
1 School of Software

Shanghai Jiao Tong University
Shanghai 200240, P.R. China

2 School of Computer Science
 Georgia Institute of Technology

Atlanta 30332, USA
E-mail: {chen-hp, ggoodd, lee.shaochong}@sjtu.edu.cn

Abstract—In order to improve the efficiency of service
discovery and release the load of service registry, this paper
proposes a service registry model named as SRMC (Service
Registry with Multilevel Caches) which clusters the service
consumers into groups according to their searching similarity
and sets up a multilevel cache for all groups to improve the
performance of service discovery. The multilevel caches of
SRMC are refreshed by a hybrid mechanism which includes
event-based refreshing and periodical refreshing. The basis of
refreshing and clustering is the history records of service
discovery requests issued by service consumers. The running
results of an instance of SRMC deployed in an experimental
environment have shown that SRMC is effective to reduce the
times of accessing global storage and the amount of data
searched in service discovery.

Keywords-service registry; service discovery; multilevel cache;
service consumer similarity

I. INTRODUCTION (HEADING 1)
Service-centric computing has been a trend for building

enterprise applications in recent years. Since development of
applications based on service-centric computing depends
greatly on services published on web, more and more
companies and organizations, even more individuals, publish
their services on Internet as a kind of investment. Meanwhile,
cloud computing greatly lowers the threshold for being a
service provider since it provides infrastructure as a service
(IaaS) and platform as a service (PaaS) for service providers
[1]. Consequently, the number of web services has been
increasing by exponential factor which brings a challenge for
service consumers: how to discover the most suitable service
cater to their requirements. As a result, the importance of
service registry has been shown much clearer than several
years before.

UDDI (Universal Description Discovery and Integration)
is the current standard of service registry [2]. It provides a
mechanism for service registering and discovering based on
WSDL (Web Service Description Language) descriptors of
services. WSDL is the specification for describing the
features of web services, including the types element
describing the kinds of messages that the service will send
and receive, the interface element describing what abstract
functionality the Web service provides, the binding element
describing how to access the service, and the service element
describing where to access the service [3]. We can find,
however, WSDL does not include any semantic information

about the functionality and quality of a web service, though
it allows publishers to edit a description of service in natural
language. The lack of semantic information about
functionality and quality in WSDL makes that UDDI-
complied service registries only can issue searches for
services based on general keywords [2].

General keywords based searching ignores the services
whose descriptions have no matched keywords but
semantically equal to the functional requirements in the
discovery request. Moreover, it considers that the services
whose descriptions have all the keywords but don’t
semantically equal to the functional requirements in the
discovery request are proper candidates. Consequently,
peoples developed behavior-aware approaches to improve
the accuracy of service discovery by adding semantic
information into the descriptors of web services. As a result,
Semantic Web Service (SWS) has been a research trend due
to the knowledge-representation languages and ontology it
brought. SWS also provides infrastructure for approaches to
describe, discovery and invoke activities on the Web
[4].Sheila A.McIlraith et al firstly indicated the importance
and potential of bringing Semantic Web technologies to Web
services in 2001 [5]. From then on, SWS emerged as a
distinct research field, and a large number of initiatives
began not long thereafter, including OWL-S [6], WSMO [7],
SWSF [8], and WSDL-S [9]. Semantic Web services
discovery(SWSD) as defined by the Semantic Web
Services Initiative Architecture(SWSA) committee, is the
process of a service requestor identifies candidate services to
achieve its objectives [10].

For the nonfunctional requirements, since WSDL-
complied descriptor of a web service has no such
information [3], people extend it to describe the static rating
of QoS in order to support QoS-aware service discovery. For
example, an OWL-S profile of a service has the information
on its quality rating [6]. IBM’s WSLA also supports
describing static quality rating as assertions of a service
provider to perform a service according to agreed guarantees
for IT-level and business process-level service parameters
[11]. However, the static rating of QoS is up to the service
requester to use this information, to verify that it is indeed
correct, and to decide what to do with it. Thus, the dynamic
status of QoS is more important than static quality rating for
service consumers to discover the desired services. To get
the dynamic status of QoS, we need to monitor and measure
the services at run-time. Monitoring may take different forms,

2010 IEEE Asia-Pacific Services Computing Conference

978-0-7695-4305-5/10 $25.00 © 2010 IEEE

DOI 10.1109/APSCC.2010.37

199

depending on the QoS parameter. These include message
interception, probing, value collection, and user feedback
[12].No matter what form is adopted, it will generate
enormous data to be kept and analyzed.

To support both behavior-aware and QoS-aware service
discovery, the service registry need to store not only the
descriptors the UDDI specification specified, such as
WSDLs, but also the additional descriptor with either
semantic descriptions or QoS descriptions, such as RDFs[13]
and WSLAs. Moreover, it also needs to be able to receive
and store the run-time status of QoS sent by service
monitoring tools. As a result, there are massive data kept in
service registry which turn service discovery into a data-
intensive mission. When massive service consumers
concurrently send service discovery requests to service
registry, the service registry will be apt to be overloaded. If
we cluster service consumers into groups according to the
searching similarities among them and cache the services
searched by the service consumers in same group, the most
of service discovery requests would be processed by
searching caches but not global storage of service registry.
Consequently, the load of service registry would be reduced
and the performance of service discovery would be improved
greatly. This mechanism certainly would bring a flaw that
some candidates would be probably ignored when the
service discovery requests are processing. But for most
service consumers, efficiency is the most important factor of
service discovery. After all, it is much better for service
consumers to get a sub-optimal service quickly than get a
optimal service in an unacceptable time.

Aware of the advantages brought by caches, we propose
a service registry model named as SRMC (Service Registry
with Multilevel Caches) which clusters the service
consumers into groups according to their searching similarity
and sets up a multilevel cache for all groups to improve the
performance of service discovery. The remainder of the
paper is structured as follows. Section II briefly summaries
the related works; Section III gives the principle of the
SRMC; Section IV describes the method for service
consumer clustering; Section V shows the instantiation of
SRMC; and conclusion in Section VI.

II. RELATED WORK
As the specification of service registry, UDDI has not

been changed for more than five years, because as a
keywords-based service registry specification, UDDI is
rather complete. Unlike the original imagination of members
of UDDI alliance, the global service registry providers are
dead or dying. Meanwhile, some open source and free
service registry implementations keep evolving now. For
example, jUDDI is an open source Java implementation of
the UDDI v3 specification for Web Services. It is used in
many study and research projects due to its simplicity and
efficiency [14]. Seekda [15] is a free web services search
engine for Web API and their providers. It helps users to find
web services based on a catalogue of more than 28,000
service descriptions. From the technical point of view, either
jUDDI or Seekda is keywords-based service registry.

Aware of the conspicuous deficiency of key-words based
search, researchers are attempting to design semantics
matching search by add semantic description into the service
descriptors. RDF is a language for representing information
about resources in the World Wide Web [13] which
facilitates the representation of semantics in service
descriptor. The semantics in RDF could be represented by
OWL-S, a language based on Semantic Web ontology
language OWL [6].

The most influencing semantic matchmaking we are
aware of is the Paolucci et al. algorithm [16], which has been
cited extensively in subsequent proposals. In [16], Paolucci
et al. proposed an ontology-based solution, which matching
Inputs/Outputs of Services by evaluating their semantic
similarity between them according to the hierarchical
concept relationships defined in an ontology tree. In another
frequently cited paper [17], Matthias Klusch et al. extended
Paolucci’s algorithm by adding new semantic similarity
grades. Matthias also designed a matchmaker, called OWL-
MX, to evaluate the semantic similarity grade between two
services. There are some other algorithms derived from these
two algorithms. In general, the maturity of ontology-based
semantic matchmaking has become acceptable now. The
service registries can adopt one of them to support behavior-
aware service discovery.

Apart from no support for semantic matchmaking,
existing UDDI-complied service registries, such as jUDDI
and Seekda, has no support for QoS matchmaking.
Researchers adopt two ways to support QoS-aware service
discovery: to add static QoS rating and to obtain run-time
status of QoS.

Kyriakos Kritikos et al. developed an OWL-S based
(syntactical separation) solution, called OWL-Q, to describe
static QoS rating [18]. However, no matter which way to be
chosen among WSLA, OWL-S, and OWL-Q, it is up to the
service requester to use this information, to verify that it is
indeed correct, and to decide what to do with it. The dynamic
status of QoS can be obtained by monitoring and measuring
the services at run-time. MDS (Monitoring and Discovery
System) of GT 4 aims to monitor and discover resource in a
grid environment [19]. IBM’s Tivoli software suite also
provides the capability to monitor the status of web service
hosted in Websphere [20]. Actually, service registries can
gather both of the two kinds of information and provide the
QoS-aware service discovery by analyzing the stored
information. We has designed such a service registry, named
as QMC [21].

To improve the performance of service discovery, UDDI
specification v3.0.2 includes replication APIs to support
distributed multi-node architecture of service registry. P2P is
also an architecture adopted by many service registries. For
example, in a frequently cited paper [22], K. Verma et al. use
a P2P approach to organize registries into domains, enabling
domain based classification of all web services. For the load
of service registry and the amount of data to be searched
when processing service discovery request, replication
architecture can reduce the former but not latter. Meanwhile,
P2P can effectively reduce the latter but not former. To the
best of our knowledge, there is no existing service registry

200

adopting multilevel cache architecture to reduce both of them.
In [23], we proposed multilevel cache architecture to achieve
this aim. But it supports only QoS-aware service discovery
and but not behavior-aware service discovery. This paper
proposes a new multilevel cache architecture to add the
support for behavior-aware service discovery.

III. PRINCIPLE OF SRMC

A. Architecture of SRMC
As shown in Figure 1, SRMC is a cloud application.

Figure 1. Architecture of the SRMC

SRMC has three ports, namely Service Publish Port,
Service Discovery Port, and Service Feedback Port. The
Service Publish Port enables service providers register their
services into the Registry. It is an extended UDDI-complied
port, which means the service providers can not only register
WSDL files but also semantic description, such as RDF files,
into the service registry. The Service Feedback Port is
designed for collecting feedbacks from Service Customers
and Service Providers. With the Service Discovery Port,
users can find and locate services they are interested in.
Service consumers can discover services not only by
keyword-based constraints but also by semantic-based
constraints and QoS-based constraints.

The Service Repository holds the static description of
services, such as WSDLs and RDFs, and the Feedback
Database stores the dynamic feedbacks of QoS sent by
Service Consumers and Providers. The Ontology Repository
stores all the ontologies, including Domain Ontology and
QoS Ontology. Both of the Behavior-aware Matchmaker and
QoS-aware Matchmaker will access the Ontology Repository
to accomplish their tasks. The Caches are multilevel caches
which are stored in a database. We will give the details of
Caches in Section III.B.

When a Service Consumer proposes a service discovery
request, the request is dispatched to the Request Processor. It
collaborates with Caches, Behavior-aware Matchmaker, and
QoS-aware Matchmaker to accomplish the mission of
service discovery. The details of the process of service
discovery will be described in Section III.C.

The Cache Manager maintains Caches by executing
cache refreshing. The details will be described in Section
III.D.

B. The structure of caches
The structure of caches is a tree shown in Figure 2.

Figure 2. Structure of the Caches

All the service consumers are clustered in groups
according to their similarity. The similarity is calculated by
the history of service discovery requests of service
consumers. The algorithm for calculating similarity will be
described in Section VI. Since functional requirements are
prior to nonfunctional requirements, the high level of cache
tree is organized by application domains. The height of cache
tree depends on the subdivision level of application domains
which is specified by provider of service registry. The leaves
of cache tree each of which relates to a group of service
consumers are clustered by the QoS preference of service
consumers. That is, for the service consumers who focus on
a same domain, they will be clustered by their QoS
preference. A service consumer is assigned to at least one
group which is related to a leaf node of cache tree. If a
service consumer focuses on several domains, it can be
assigned to multiple groups.

There are two global tables keep the data of structure of
caches and the relationship between service consumers and
cache nodes:

� NodesofCaches: It holds the data of tree structure of
caches. Each record has the structure as <id, URL,
father> in which id field is the unique identity of
node, URL field is a link to the physical storage
location of the cache, and parent field refers to its
father node. The value of parent field of root node
is null.

� ServiceConsumers: It holds all the necessary
information of service consumers which at least
includes id and password. The fields of this table
can be extended by provider of service registry.

� RelationC2C: It holds the relationship between
service consumers and caches. Since a service
consumer can be assigned to multiple groups, the
relationship is a many-to-many one which needs a
association table to hold it.

Domain 0
Cache

Domain 1-2
Cache

Domain 1-1
Cache

Domain 1-n1

Cache

Domain 2-1
Cache

Domain 2-n2

Cache

QoS m-1
Cache

QoS m-nm

Cache

Consumer 1
Consumer 2

Consumer 3

Service
Repository

Feedback
Database

Service Feedback Port

SRMC

Service Discovery Port

FindFeedback

Service Publish Port

Publish

Behavior-aware
Matchmaker

QoS-aware
Matchmaker

Request Processor

Service
Providers &
Consumers

Service
Consumers

Service
Provider

Ontology
Repository CachesCache Manager

201

All the service consumers in same group share a unique
cache to record their requests and received responds. All the
data of a cache are stored in a physical location which is
referred by NodesofCaches table. There are four local tables
kept in each leaf node of cache:

FeaturesList: It holds features of the cache,
including a domain field and a QoS field. The
domain field is one of the finest-grained domains
which relate to the nodes of second lowest level of
cache tree. The QoS field is a vector each component
of which represents a range of a quality attribute in
the form of <attribute, minValue, maxValue>. The
statuses of QoS of all the services cached in this
cache node are in the ranges specified by QoS vector.
RequestsList: It holds different service discovery
requests sent by the service consumers in this group.
Each request has two parts: functional requirements
and nonfunctional requirements. Since we use RDF
to describe functional requirements, the functional
requirements are represented by a vector, named as
func, each component of which is in form of
<subject, {predicator}, object>. The nonfunctional
requirements are also represented by a vector, named
as nonfunc, which is in the same form of QoS field
of FeaturesList table.
RespondsList: It holds the discovery results relate to
requests in RequestsList table. It has at least three
fields. The first one is id. The second one is a
foreign id refers to a request in RequestsList. The
third one is a vector to hold the result set, named as
result, each component of which is a candidate
service meets all the requirements in the request.
HistoryRequestsList: It holds all history records of
service discovery requests sent by the service
consumers in this group. Each record has two
foreign keys: the first one refers to a service
consumer record in ServiceConsumers to indicate
the sender of the request; the second one refers to a
service discovery request in RequestsList. Each
record also has a timestamp which is used in a
fading memory method to calculate the similarity
among service consumers.

The above structure of Caches is the basis for process
service discovery requests.

C. The process of service discovery
When a service consumer sends a Service discovery

request via Service Discovery Interface, it is processed by
Request Processor as following steps:

1. Request Processor gets id of the ServiceConsumers
table, and uses it to locate the caches related to the
groups of the Service Consumer by accessing
NodesofCaches and RelationC2C tables. For a new
service consumer who has no history records in
SRMC, it will be assigned to a temporary group,
named as freshmen. Moreover, Request Processor
respectively inserts a new record into

ServiceConsumers and RelationC2C tables, and
jump to step 4. For a returned service consumer,
since it can be assigned into multiple groups,
Request Processor may find multiple caches.

2. For each located cache, Request Processor matches
the request against all the requests in RequestsList
table. At first, the functional requirements will be
matched against the func vector of each request by
Paolucci algorithm [16]. The provider of service
registry can specify an acceptable minimum degree
of match, such as Plug-in. If the degree of match is
not lower than the minimum degree, we say they
match on functionality. If there is no request
matches the functional requirements, jump to step 4.
Otherwise, Request Processor will get a set of
matching requests. Next, the nonfunctional
requirements will be matched against nonfunc
vector of each matching request. For each request, if
the ranges of all quality attributes in nonfunc vector
meet the nonfunctional requirements, we say they
match on QoS. If there is no request matches the
nonfunctional requirements, jump to step 4.
Otherwise, the matching requests are candidate
requests.

3. Request Processor iterates the set of candidate
requests and gets the corresponding responds from
RespondsList table. The joined set of all responds
will be sent back to service consumer as the final
discovery result. Jump to step 6.

4. Request Processor creates instances of Behavior-
aware and QoS-aware matchmakers, divides the
request into functional requirements and QoS
requirements, and respectively passes them to the
instances of Behavior-aware and QoS-aware
matchmakers. The Behavior-aware and QoS-aware
matchmakers respectively find a set of function-
matched services and a set of QoS-matched services.
Request Processor calculates the intersection of the
two result sets returned by Behavior-aware and
QoS-aware matchmakers. The resulting intersection
is the final result which is sent back to the Service
Consumer.

5. Request Processor inserts a new record into
RequestsList table to record a new request which is
different with all records in RequestsList table.

6. Request Processor inserts a new record into
HistoryRequestsList table to record the action of
service discovery of the service consumer.

All the service consumers in group freshmen, will be
reassigned into other group(s) when the Cache is refreshed.
The mechanism of Cache refreshing will be described in next
section.

In such a process, Request Processor searches local
caches at first. Only when it receives a new request, it will
search the global storage of service registry. As a result, the
mean amount of data to be searched when processing service
discovery requests is reduced. Meanwhile, the load of
accessing global storage is also reduced.

202

D. Cache refreshing
There are two kinds of cache refreshing in SRMC. The

first one is an event-based one. When an existing service is
updated or removed from SRMC, a message of the event will
be sent to all caches via Cache Manager. This message will
trigger the event-based refreshing. All the caches will update
the cached information with the data in message when they
receive an update message. When they receive a delete
message, all the caches will delete the service if they cached
it.

The second kind of cache refreshing is periodical
refreshing. The work of periodical refreshing has four parts.
The first part is to process the service consumers of freshmen
group who are new users of SRMC. We can set a threshold
of the number of history records for single service consumer.
In periodical refreshing, Cache Manager scans the
HistoryRequestsList of group freshmen to find out all the
service consumers whose number of history records has
greater than the threshold. For each of such service
consumers, the Cache Manager will assign it into group(s)
by the clustering method in Section IV and send its history
requests records to the assigned group(s). The assigned
group(s) will parse the records and add them to RequestsList
and HistoryRequestsList tables according to their content.
Finally, the Cache Manager will delete the service consumer
and all the records relate to it in group freshmen.

The second part of periodical refreshing is to fade the
history records. Since we use fading memory method to
cluster service consumers, we need to fade the records in
HistoryRequestsList table. The Cache Manager deletes all
the expired records according their timestamps. The period
of validity of records is specified by provider of service
registry. The RequestsList table will be scanned as long as
any record of HistoryRequestsList table is deleted. If a record
of RequestsList table is not be referred by any record of
HistoryRequestsList table any more, it will be deleted.

The third part of periodical refreshing is to process all
requests in RequestsList table in order to refresh the records
in RespondsList table. This task mainly focuses on the new
registered services because they cannot be discovered
without this task. For most service discovery requests, they
can be processed by accessing caches. As a result, the new
registered services are hardly discovered because they are
not in any caches but in global storage. Since it is a time-
consuming task, it should be executed at idle time.

The forth part of periodical refreshing is to re-cluster
service consumers. Since each record of HistoryRequestsList
table has a timestamp and the expired records will be deleted,
the algorithm of re-clustering service consumers adopted by
Cache Manager is a fading memory method. This task is also
a time-consuming one, so it also should be executed at idle
time.

The four parts of periodical refreshing can be executed
together. But more reasonable mechanism is they have their
own periods which may be different with each other, because
some of them are time-consuming tasks which should have
longer periods and others are not time-consuming tasks
which may have shorter periods.

IV. CLUSTERING SERVICE CONSUMERS
There are two steps in service consumer clustering. The

first step is to find the application domains in which the
service consumers are interested, that is, to find the concerns
of service consumers. We use an OWL-S based description
model defined in [24] to describe services, because it
facilitates behavior-aware service discovery:

����������������������S = { I�, O�, Φ(I�, O�, P�), Ct } ����������������������

Where IC = {I�, … , I�} represents a set of inputs with
types of concepts; OC = {O�, … , O� } represents a set of
outputs with types of concepts; Φ(I�, O�, P�) is the semantic
relationship holding between IC and OC variables, and is
represented in the form of OWL triples; PP = {P�, … , P�} is a
set of ontology properties represent predicates that relating IC
and OC; Ct is the constraints set imposed on S including QoS
constraints. This model is also used by service consumer to
describe request of service discovery.

When a service consumer issued a certain number of
requests of service discovery and obtained the corresponding
number of responds, we can get its history by accessing the
HistoryRequestsList table and cluster its history records to
find its concerns. Since the inputs and outputs in

Φ(I�, O�, P�) are subset of IC and OC, we only need focus on
IC and OC. Each element in IC and OC is a concept of
ontology which is a taxonomy tree of an application domain.
To cluster history records of service consumers, we assign a
unique value to each concept of ontology which indicates its
position in depth-first traversal of taxonomy tree. Then we
calculate the average position of each request in
HistoryRequestsList table as equation (2):

����������������������P�
	 =

∑ ��

��

�� �∑ ���

��
���

���
 ��������������������������������

Where P�
	 represents the average position of request

R; P�

	 represents the position of input I� ; P��

	 represents the
position of output O�; n represents the number of inputs; m
represents the number of outputs.

For each request, we make a pair P�
� =< P�

	, t� >, where
t� represents the timestamp of request R. For a single service
consumer, we get a dataset P�

� = {P��

� , P��

� , … , P��

� } , P�

�
represents the pair of request R�. We use OPTICS algorithm
[25] to cluster P�

� . The reason we choose OPTICS algorithm
is that it can filter the noise. What we need is to find the
concerns of a service consumer. But it is common that a
service consumer issues requests to find services which are
not in its concerned domain. We need to filter such requests
because they are noise for finding concerns. Each pair is
mapped onto a point on coordinate, where < P�

	, t� > is
mapped onto the <x, y> value. We use the euclidean distance
to measure the distance between two points. For the two
parameters of OPTICS,ε , which describes the maximum
distance (radius) to consider, and MinPts, describing the
number of points required to form a cluster, provider of
service registry can specify it according to the subdivision

203

level of application domains. The clusters obtained by
OPTICS algorithm are the concerns of a service consumer.
The clusters determine which the second lowest caches the
service consumer should be assigned into.

The second step of service consumer clustering is to
further cluster the service consumers in same second lowest
cache into different groups by their QoS preference. The
QoS constraints in a service discovery request make up a
high-dimension data structure because the multiple quality
attributes are orthogonal. Since the high-dimension data
clustering is a quite complex problem, we use multiple k-
means clustering instead. Suppose the number of the quality
attributes we focus on is n. We use k-mean clustering to
divide ith attribute into K� ranges, thus, the whole data space
is divided into ∏ K�

�
��� subspaces.

Before QoS clustering, we need to preprocess data by
merging the ranges of quality attributes in the requests issued
by same service consumer. For each service consumer, we
get all the history requests in the cache and iterate them. For
each of quality attribute, we iterate the QoS constraints in all
history requests and merge the acceptable range by join them.
Then, we get the middle point of merged range as the prefer
point of the service consumer.

After preprocess, we use k-mean clustering to cluster the
service consumers. Consequently, the service consumers are
clustered into ∏ K�

�
��� groups. Hereto, the mission of service

consumer clustering is accomplished.
The whole process is as the following pseudo-code:

1 function Domain_Clustering(Collection cons)
2 // cons: the service consumers
3 Collection<Collection> doms = {};
4 //doms: 2-dimensional collection to hold the relationship
5 // between service consumers and application domains.
6 for each consumer in cons
7 Collection history = getHistory(consumer);
8 // his: history records of consumer
9 Collection positionpairs ={};
10 // positionpairs: position pairs of all history records
11 for each R� in history
12 P�

	 = position(R�);
13 P�

� = makepair < P�

	 , t�

>;

14 positionpairs = positionpairs {P�

� };
15 endfor
16 Collection domains = {};
17 domains = opticsClustering(positionpairs);
18 // domains: domains of the service consumer
19 for each dom in domains
20 if dom is not in doms
21 add(doms, {dom});
22 // add new collection into doms to indicate
23 // a new application domain
24 add(doms[dom], consumer);
25 // add consumer into doms[dom] to indicate the
26 // consumer is assigned to this application domaim.
27 endfor
28 endfor
29 endfunction

1 function QoS_Clustering(Collection<Collection> doms)
2 // doms: the result of Domain_Clustering
3 for each dom in doms
4 for each consumer in dom
5 Collection history = getHistory(consumer);
6 // his: history records of consumer
7 for each q� //q� is a quality attribute
8 range = mergeRange(history);
9 // range: the merged range of q�
10 float p = concernPoint(range);
11 // p: the concern point of q�
12 endfor
13 endfor
14 Collection<Collection> groups = {}
15 // groups: the result of clustering by a single attribute.
16 for each q�
17 add(groups,{k-mean(q�)});
18 // k-mean(q�): clustering consumers by q�
19 endfor
20 groups = orthogonalize(groups)
21 // the final result comes from the groups orthogonalizing
22 endfor
23 endfunction

V. INSTANTIATION OF SRMC
Since we are studying on another model for building

service registry which is deployed as a cloud application, we
shared the experimental environment with it. The shared
experimental environment is a 10-computer environment in
which we runs one Cloud Controller, three Cluster
Controllers, and six Cluster Nodes. We install Apache
Hadoop [26] on the cloud to store all the necessary data.

We simulate the semantic descriptors and QoS feedbacks
of more than 10,000 web services to accumulate necessary
data. All the web services belong to five domains: travel,
shopping, e-learning, sport, and accounting. We designed
more than 1,000 request templates. They are used by 500
service consumers we simulate to access SRMC with
different frequency. After accumulating more than 100, 000
requests, we find that cache hit ratio varies from 40% to 80%
when we set different values to the parametersε and MinPts
of clustering and period of periodical refreshing.

The running results of this instance of SRMC have
shown that SRMC is effective to reduce the times of
accessing global storage and the amount of data searched in
service discovery. However, our experiments are not enough
to precisely measure and analyze the performance of SRMC.
Since the hosting environment we establish is an
experimental one which is quite different from the true cloud
platform, there is no real user to access it. As a result, we
have no enough valid data to do more analysis. The data we
simulate are not massive enough to check the performance of
SRMC. After all, when the amount of data is not massive
enough, the improvement of performance is not notable. So
in next work, we will deploy it into a commercial
environment and compare it with other service registry to
precisely measure and analyze its performance.

204

VI. CONCLUSION
In order to improve the efficiency of service discovery

and release the load of service registry, this paper proposes a
service registry model named as SRMC (Service Registry
with Multilevel Caches) which clusters the service
consumers into groups according to their searching similarity
and sets up a multilevel cache for all groups to improve the
performance of service discovery. The multilevel caches of
SRMC are refreshed by a hybrid mechanism which includes
event-based refreshing and periodical refreshing. The basis
of refreshing and clustering is the history records of service
discovery requests issued by service consumers.

The running results of an instance of SRMC deployed in
an experimental environment have shown that SRMC is
effective to reduce the times of accessing global storage and
the amount of data searched in service discovery. In next
work, we will deploy it into a commercial environment and
compare it with other service registry to precisely measure
and analyze its performance.

ACKNOWLEDGMENT
As a visiting scholar of Georgia Institute of Technology,

Hao-peng Chen thanks Georgia Institute of Technology and
Prof. Ling Liu, a Professor of College of Computing at
Georgia Institute of Technology, for their supports.

This paper is also supported by the Project of Daystar of
Shanghai Jiao Tong University.

REFERENCES
[1] Michael Armbrust, Armando Fox, et.al, Above the Clouds: A

Berkeley View of Cloud Computing,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-
28.pdf, 2009

[2] Luc Clement, Andrew Hately, Claus von Riegen, Tony Rogers,
UDDI Version 3.0.2, http://www.oasis-open.org/committees/uddi-
spec/doc/spec/v3/uddi-v3.0.2-20041019.htm, 19 October 2004.

[3] David Booth, Canyang Kevin Liu, Web Services Description
Language (WSDL) Version 2.0 Primer, http://www.w3.org/
TR/2007/REC-wsdl20-primer-20070626/, 26 June 2007

[4] David Martin, John Domingue, Michael L.Brodie, Frank Leymann,
Semantic Web Services, Part1, IEEE Intelligent Systems,
September/October 2007, volume 22, no.5, pp.12-17.

[5] McIlraith, S., Son, T.C. and Zeng, H. Semantic Web Services, IEEE
Intelligent Systems. Special Issue on the Semantic Web. 16(2):46--53,
March/April, 2001

[6] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew
McDermott, Sheila Mcllraith, Srini Narayanan, Massimo Paolucci,
Bijan Parsia, Terry Payne, Evren Sirin, Naveen Srinivasan, Katia
Sycara, OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/, 22 November 2004.

[7] Jos de Bruijn, Christoph Bussler, John Domingue, Dieter Fensel,
Martin Hepp, Uwe Keller, Michael Kifer, K.Birgitta, Jacek Kopecky,
Ruby Lara, Holger Lausen, Eyal Oren, Axel Polleres, Dumitru
Roman, James Scicluna, Michael Stollberg, Web Service Modeling
Ontology(WSMO), http://www.w3.org/Submission/WSMO/, 3 June
2005.

[8] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof,
Michael Gruninger, Richard Hull, Michael Kifer, David Martin,
Sheila McGuinness, Jianwen Su, Said Tabet, Semantic Web Services
Framework (SWSF) Overview,
http://www.w3.org/Submission/SWSF/, 9 September 2005.

[9] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan,
Marc-Thomas Schmidt, Amit Sheth, Kunal Verma, Web Service
Semantics - WSDL-S Version 1.0,
http://www.w3.org/Submission/WSDL-S/, 7 November 2005.

[10] Mark Burstein, Christoph Bussler, Michal Zaremba, Tim Finin,
Michael N.Huhns, Massimo Paolucci, Amit P.Sheth, Stuart Williams,
A Semantic Web Services Architecture, IEEE Internet Computing,
September 2005, volume 9, issue 5, pp.72-81.

[11] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, Richard
Franck, Web Service Level Agreement (WSLA) Language
Specification, http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf, 2003/01/28

[12] Qi Yu, Xumin Liu, Athman Bouguettaya, Brahim Medjahed,
Deploying and managing Web services: issues, solutions, and
directions, The VLDB Journal (2008) 17:537–572

[13] Frank Manola, Eric Miller, RDF Primer,
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/, 10
February 2004

[14] Tom Cunningham, Kurt Stam, and The jUDDI Community, jUDDI
Dev Guide,
http://ws.apache.org/juddi/docs/3.0/devguide/html/index.html, 2009

[15] Seekda, http://webservices.seekda.com/, May 2010
[16] Massimo Paolucci, Takahiro Kawamura, Terry R.Payne, and Katia

Sycara, Semantic Matching of Web Services Capabilities, The First
International Semantic Web Conference on The Semantic Web(ISWC
2002), 2002, pp.333-347.

[17] Matthias Klusch, Benedikt Fries, Katia Sycara, Automated Semantic
Web Service Discovery with OWLS-MX, The Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2006), Hakodate, Japan, 8-12 May 2006, pp.915-922.

[18] Kyriakos Kritikos, Dimitris Plexousakis, OWL-Q for Semantic QoS-
based Web Service Description and Discovery, First International
Joint Workshop on Service Matchmaking and Resource Retrieval in
the Semantic Web, PP123-137, 2007

[19] GT Information Services: Monitoring & Discovery System (MDS),
http://www.globus.org/toolkit/mds/

[20] Tivoli Monitoring, http://www-
01.ibm.com/software/tivoli/products/monitor/

[21] Siming Xiong, Haopeng Chen, QMC: A Service Registry Extension
Providing QoS Support, Proceedings of 2009 International
Conference on New Trends in Information and Service Science
(NISS 2009), PP.145-151, Beijing, China, 2009.6.30-2009.7.2,
ISBN:978-0-7695-3687-3/09.

[22] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar and
J. Miller, METEOR-S WSDI: A Scalable P2P Infrastructure of
Registries for Semantic Publication and Discovery of Web Services,
Journal of Information Technology and Management, Special Issue
on Universal Global Integration, Vol. 6, No. 1 (2005) pp. 17-39.
Kluwer Academic Publishers.

[23] SHU-JIA WANG, HAO-PENG CHEN, A Web Service Selecting
Model Based on Measurable QoS Attributes of Client-Side,
Proceedings of 2008 International Conference on Computer Science
and Software Engineering (CSSE 2008), PP.385-389, Wuhan, China,
2008.12.12-2008.12.15, ISBN: 978-0-7695-3336-0/08.

[24] Barhamgi, M. Benslimane, D. Ouksel, A.M.
LIRIS Lab., Claude Bernard Univ., Villeurbanne, SWSMS: A
Semantic Web Service Management System for Data Sharing in
Collaborative Environments, Proceedings of 3rd International
Conference on Information and Communication Technologies: From
Theory to Applications (ICTTA 2008), pp.1-5, April 2008.

[25] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander.
OPTICS: Ordering Points To Identify the Clustering Structure. ACM
SIGMOD international conference on Management of data 1999.
ACM Press. pp. 49–60.

[26] Apache, "Apache Hadoop." http://hadoop.apache.org/ . 2010.

205

