
Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 88

Soflipse: Tool for Automatic Modelling and

Reviewing SOFL Workflows

Yisheng Wang, Qing Zheng and Haopeng Chen

School of Software, Shanghai Jiao Tong University

Shanghai, 200240, China

easonyq@hotmail.com, mark.q.zheng@gmail.com, chen-hp@sjtu.edu.cn

Abstract: Software quality is always a hotspot discussed by developers around the world.
Formal method in developing software is a new topic that attracts many researches' attentions.
It uses formal language to describe and model key workflow in a software project and thus uses
mathematical and logical inference to ensure the correctness of the workflow. SOFL (Structured
Object-oriented Formal Language) is a kind of formal language describing the input, output and
processing procedure of a service accurately. There are two parts in SOFL, SOFL Specification
and CDFD Diagram, which describing a workflow from two different angles. Besides, some
basic elements are introduced into SOFL such as Module, Process, Dataflow, etc. We can also
review and validate a workflow modeled by SOFL through strict formal methods. In this way we
can finally build up a formal workflow without any syntax or obvious errors. In order to show the
feasibility of using SOFL to finish the software developing job, we have also developed plug-in
tool called ‘Soflipse' which enables the users to model and review a workflow automatically. By
using this, the users can ensure that any workflow which passes through review and validate
test won't crash and will get expected answers comparing with its requirements.

Keywords: Formal method, SOFL, Softlipse, Workflows;

1. Introduction

A commercial software product always needs

tens of months' time and the cooperation of

many people, including coders, testers, and

designers. Nevertheless, software quality still

can't be guaranteed. Bugs, maintaining and

costs are the bottleneck of software industry

[11]. We can never prove that a software

product is correct, for its infinite input can't be

enumerated [6]. Every software product has its

potential problem and no one can tell whether

it will crash in the next second. What's more, in

distributed system where a single application

mostly need the collaboration of several

hundred computers, software errors occur at a

fairly high rate. People have already found a lot

of ways to improve software quality such as

standard developing processes and complete

software testing. Using these classic methods

such as RUP developing process, black-box

testing or white-box testing can indeed improve

its quality, but still 100% correct is unable to be

reached or proved.

Actually, there are some other studies that

focus on formal methods in software

developing. SOFL [14] is a kind of formal

language which can be used to describe a

workflow. Usually we use SOFL Specification

and CDFD to model a workflow. There also

exist some basic elements in SOFL, such as

Module, Process, Dataflow and so on. CDFD

describe mostly the relationship between these

basic elements, such as what kind of dataflow

exists between two different and neighbored

processes, or the overall dataflow of the whole

process and module. Moreover, there also

exists hierarchical relationship between two

CDFD Diagrams. This is similar to Class

Diagram in UML [16].

In SOFL, if a process can be decomposed into

a module with several processes in children-

level, its child-level CDFD Diagram describing

the module it decomposed into can also exists

as the refinement of the parent-level CDFD

Diagram. The input and output dataflow in

child-level CDFD is the same as them of the

process in parent-level. Compared with CDFD

Diagram, SOFL Specification describes mostly

the detailed information of every basic element,

International Journal of Computing Technology and Information Security

Vol.1, No.1, pp.88-98, March, 2011

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 89

such as how the detailed implementation of a

process is, or what kind of internal and external

variables or constants a module has and so on.

More vividly, we can make a comparison with

Entity-Relationship Diagram and SQL script in

database designing [2]. In database designing,

we also have two kinds of describing method, a

visual one and a textual one. So CDFD

Diagram is similar to Entity-Relationship

Diagram, which describes relationship between

basic elements, and SOFL Specification is

similar to SQL script, which describes the

detailed method. But different with database

designing, Entity-Relationship Diagram can be

transformed to SQL script but CDFD can't.

CDFD Diagram and SOFL Specification work

has complementary roles. We can't describe

and model a software process with only one

method of them, otherwise we would lose

some information of software, and the principle

of equivalent is violated. Only by using these

two methods at the same time can we describe

a software process in a complete and accurate

way.

Formal method is more complicated compared

to classic methods such as UML. But its ability

of review and validate is the key advantage

over UML [24] [13] [12]. So by analyzing SOFL

Specification and CDFD, we can find whether

there are some potential errors in the model by

formal methods which will be described

afterward. And we should keep in mind that

workflow describing with SOFL can be ensured

to be correct. Here we want to point out the

difference of review and validate towards a

formal language. Review means checking the

textual specification or codes and trying to

ensure it can run correctly without any syntax

or static semantic errors like constant value

violation. Validate means checking whether the

written formal modeling fits the need proposed

at begin. These are two different steps formal

methods use to ensure the correctness of

codes.

We have developed a plug-in tool namely

„Soflipse' based on IBM Eclipse platform [1].

This tool helps the users to model and review a

workflow automatically. Through Soflipse,

users can describe and model there software

process by drawing CDFD Diagram. After that

system will generate the SOFL Specification

according to the CDFD and then begin to

review and validate it. If there are some errors

in SOFL Specification, the editor will show it by

make the error codes red-underlined.

Otherwise, it will show a success information

which means it passes reviewing.

The rest of the paper is organized as follows:

Section 2 lists some motivations of our work.

Section 3 introduces some architecture and

implementation of our tool. Section 4 shows

our approach about how to review SOFL.

Section 5 summarizes some experiment

evaluation of the tool including a sample

workflow and its result. Section 6 introduces

related work by others recently. Section 7

summarizes the main contribution of the paper

and comments on further research.

2. Motivation of the Research

Software today is widely used in our daily life.

Among them, some applications like Bank

System, Military System, etc ask for a fairly

high quality need, for once if there is a mistake;

the loss would be great and couldn't be made

up usually [10]. For these reasons, we have to

improve the quality (including availability,

usability, repair time, etc) of these important

software product. There's a study named

„Software Engineering' which focuses on how

to develop a high quality software product by

using standard developing process such as

RUP or XP. By using these, software quality

can indeed gain improvement, but never reach

perfect level. So we can always see these

sentences in Software Requirement

Documents: Our product can run correctly

within 99.99% of the time. Theoretically this

correctness rate can be very close to 100%,

but never reached. That's the reason why even

today we often see the news that some bank

suffered a great loss because of the incorrect

action its ATM did.

Formal method can help us to solve this

problem. Researches on formal method used

in software development begin in the 70‟s last

century. It is Dijkstra's Weakest Pre-predicate

Calculus and Hoare Logic that started the

research and proved it feasible theoretically.

Unlike classic methods, a workflow modeled by

formal language can be proved correct using

mathematical and logical method. After several

steps of inference, we can judge whether the

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 90

piece of formal language codes fits its need. If

so, we can say that this piece of codes is

correct, which means we can run it without

most of errors. (More information will be

discussed afterward.) And this inference

process is called review.

Only using formal language to describe and

review a software workflow isn't enough. What

we seek is to review it automatically, rather

than we humans use our brains to do it. So we

should set up a standard format which enables

computer to know what formal language is

talking about and how to review it. In this

paper, we use SOFL as our language and we

have also developed a tool which lets users to

build up his own SOFL workflow. After that, he

can review it just by clicking a single button.

The entire review job will be done after this

click automatically. Review can help us find

some obvious errors such as parameter type

mismatch or constant value violation. We can

see it in the following example.

Suppose we have such a workflow composed

by two processes. The first one returns an

integer x as its output with the post-condition

x > 5. The second one takes an integer y as its

input with the pre-condition y > 6. We can

clearly see that Process 1 can't meet the pre-

condition of Process 2, which we call it

constant value violation. If we change the input

variable of Process 2 into character y, which is

called parameter type mismatch.

It must be noted that in this paper we want to

point out an automatic model and review

method. Comparing with those half-automatic

methods, no humans are involved in reviewing

the workflow, which means all the

mathematical and logic inference are done by

computer and algorithm.

As conclusion, our goal is to find all these kind

of errors by using the proposed tool and to

ensure the workflow is correct. And also to

ensure that the whole process is automatic

using „Softlipse‟.

3. System Implementation

As an eclipse plug-in project, our tool has a

similar architecture like other eclipse plug-ins.

When using it, all the user need to do is to

unzip the RAR file into eclipse's installing

directory. We divided our system into three

layers, which can be seen as Figure 1.

Eclipse core

Soflipse

CDFD Editor
Specification

Editor

Compiler Reviewer Validater

Other Views

Figure 1. Architecture Diagram

Presentation Layer

The first layer composed by „CDFD Editor' and

„Specification Editor' acts as the presentation

layer. It provides users two editor for different

usage. CDFD Editor is the default editor of the

SOFL modeling file (with suffix „.module'). In

this editor, user can draw his own CDFD by

using tool bar beside the editor. User can drag

and drop processes use link line to connect

them and fill in the pre and post condition to

complete a process. All of these jobs can be

down with the cooperation of CDFD Editor and

other views such as the outline view, properties

view, etc. This graphical editor extends GEF

(stands for Graphical Editor Framework) which

allows developer to build up his own editor with

different style. After drawing and filling in

information, user can switch to Specification

Editor to see the auto-generated SOFL

Specification and any syntax errors if exist.

This textual editor is set to read-only, in order

to prevent user modifying it casually and

violating SOFL's rule. We have also done a

red-underline mark to show any types of errors

if exist. These errors can be checked by

Compiler, Review or Validate in the lower

layer, which will be discussed in the next

paragraph. What's more, for better user

experience, we also overwrite some common

views which will be used frequently. These

views including Package Explorer (shows

resource tree and its inner structure), Outline

(shows the hierarchy relationship within the

CDFD) and Property (shows detail information

and allow user to fill in some of them) These

views help user to complete his SOFL model,

such as filling pre and post condition using

Property view.

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 91

Logic Layer

Below the presentation layer, we build up a

logic layer which is responsible for some jobs

involving inner logic of SOFL. Here are three

modules. The compiler takes SOFL

Specification codes as input, and returns a

semantic tree and all syntax errors if exist. We

use JavaCC as our tool to write this SOFL

Compiler and all the SOFL grammar is lists

behind books written by Shaoying Liu, who at

first proposed and made research on SOFL.

Some detail but important problem like left-

recursive, priority of operator can be found in

Andrew W. Appel's books [3]. If there are any

syntax errors such as semicolon missing,

undefined identifier or parameter number

mismatching, the compiler will check it out and

report to the Specification Editor, and finally

show user in the form of red-underline. Review

and Validate is the key functional module

which reflects the value of formal methods.

Reviewer takes semantic tree as input which

generated by compiler and judge whether the

semantic tree fits SOFL's rule. In this process,

reviewer also needs some link information

provided by CDFD Editor, for this type of

information isn't shown in SOFL Specification.

After review process, a result will be generated

to point out whether this workflow can pass

review or any possible errors. The last module

named „Validater' ensures the consistency

between SOFL model and customers' need.

Because this paper we focus on SOFL

modeling and review job, so validate is out of

range. For more information about validate,

readers can refer to Qing Zheng's paper about

validate in SOFL.

Plug-in Layer

The third layer named „Soflipse' is just a virtual

plug-in layer connecting to Eclipse Core. As a

eclipse plug-in project, we must register itself to

eclipse for its recognition and communication.

This layer is responsible for the information

exchange between our system and eclipse. For

example, when user tries to rename a process

using Properties View, it will send a message

to eclipse core and then a rename event will be

fired to notice CDFD Editor changing its display

name. It acts as a connector and information

collector for our system.

4. Approach

How to realize the function of compiling and

reviewing SOFL will be discussed in the

following. In general, the SOFL Compiler takes

SOFL Specification codes as input and returns

a semantic tree to show its inner hierarchy

relation. In this process, any syntax or

semantic errors will be thrown. Review in

SOFL means checking SOFL Specification to

ensure that it can run without errors which are

possible to lead it to crash. The reviewer takes

semantic tree and CDFD as input and then

checks whether there exist errors. After

checking errors including syntax, semantic, or

higher level such as neighbor processes

mismatch, we can say that a workflow without

these is correct.

Compiler: We use JavaCC as our compiler

tool. JavaCC is a compiler generator which

needs user to write a profile with suffix „.jj' and

generate a compiler written in Java. All the

lexical unit and syntax rules are written in the jj

file. More specific, JavaCC use LL(1) as its

compile algorithm which means from left to

right, left-most derivation with looking ahead 1

word each time. More information about

JavaCC and LL(1) you can refer to some

books about compiler.

Actually, using JavaCC as compiler generator

isn't as easy as I described above. If we

directly input all the SOFL syntax into jj file, we

will surely run into these two problems: left-

recursive and operator priority. I'll introduce

these in the following.

Left-recursive: Left-recursive means a compiler

using LL(1) algorithm come into infinite loop

because of the grammatical problem. The

result will be stack overflow and the algorithm

can't reach end. Let's consider a grammar rule

as Figure 2.

9,...,2,1exp

expexpexp

exp





S

Figure 2. Left-recursive Grammar

Obviously this is a grammar describing

operation plus. But when compiler tried to

match this grammar, it found that „exp' can

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 92

always expand to „exp + exp'. That simply

comes to a infinite loop. So this is the problem

of grammar, not compiler. What we should do

is to change the grammar into non-left-

recursive one by changing its structure while

keep it equivalent to the original one. Figure 3

is the possible one without left-recursive.

Figure 3. Non-left-recursive Grammar

With the introduction of exp1', the grammar is

able to stop in several step. The key to this

problem is that in the last grammar First (exp)

= exp while in this one First (exp1') = +, where

„+' is a terminal character. We need to transfer

all these left-recursive grammars into non-left-

recursive ones to ensure the compiler

generated won't come into infinite loop.

Operator Priority: We know in mathematics,

any binary operators has its priority, such as

multi and divide is prior to plus and minus.

Here as a compiler we also need to deal with

these things appearing in expression. Unlike

elementary mathematics where only four types

of basic operator are defined, SOFL has

defined 20 types operator. We divided them

into 8 levels, which are listed from low to high

in terms of their priority.

1. <=>

2. =>

3. or

4. and

5. =, <>, <, <=, >, >=, inset, notin

6. +, -

7. *, /, div, rem, mod

8. **

As we have discussed above, binary operator

can lead to left-recursive problem. So

according to last section, you may change the

original grammar contains „exp → exp binaryop

exp' into ones as Figure 4.

]'[expexp'exp

9,...,2,1exp

]'[expexpexp

exp

111

1

11

binaryop

S









Figure 3. Binary operator grammer without left-

recursive

Still we haven't made operator priority into

consideration. It can be easily seen that

according to this grammar describing in Figure

4, any operator appears earlier in an

expression will get higher priority. So such an

expression like „3+5*2' will get the answer 16,

rather than 13. Thus we need to improve

further in base of the grammar shown in figure

5 to make it able to judge priority.

]'[expexp8'exp

9,...,2,1exp

......

]'[expexp2'exp

]'[expexpexp

]'[expexp1'exp

]'[expexpexp

]'[expexpexp

exp

888

8

222

332

111

221

11

oplv

oplv

oplv

S

















Figure 4. Binary operator grammer

Consider grammar shown in Figure 5 where

lvxop means operator with x as its priority level.

Let's imagine the compile process according

these grammar with the expression „3+5*2'. In

this expression „*' of level 7 and „+' of level 6

appears. So when the compiler runs into „+', it

will build up a tree with parent node „+', left

child node „3' and blank right child node. After

that, when it comes across „*' with higher level,

it replace the blank right child node with „*' and

its two child „5' and „2'. And if we change this

expression into „3*5+2', things are different.

After it meets „*' and builds up a tree with

parent node „*', left child node „3' and blank

right child node, it won't replace the blank right

child node with „+', for „+' gains lower level than

]'[expexp'exp

9,...,2,1exp

]'[expexpexp

exp

111

1

11







S

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 93

„*', and once the compiler trap into higher level

operator, it won't return back to construct lower

ones. This time, it will replace the blank right

child node with „5', and build a new tree with

parent node „+', left child node „*' and right child

node „2'. At last, we expand the grammar from

3 lines to 18, but we solve the operator priority

and left-recursive problem, which is very

important for a compiler developing.

Reviewer: The notion of the word „review'

varies from many researches. In SOFL, the

aim of review is to ensure that the workflow

modeled by formal method can run well and

without most of errors, which has been

indicated earlier. Researches on finding

methods to review workflow modeled by formal

language has attracted great attention and

people indeed contribute a lot in this field.

Shaoying Liu has proposed a review method

called „review task tree', which is similar to fault

tree analysis. What should be pointed out is

that In Liu's method, he doesn't build up a

SOFL Compiler, which helps to check lexical,

syntax and semantic errors in SOFL. So review

task tree is responsible for all errors that should

be checked in review, which ranges from

lexical to high level. That is the main difference

between our method and review task tree.

The coverage of errors which can be detected

by reviewer is limited. Some variables that

need user to give can't be checked until they

are actually assigned. For the reason that

user's input can't be forecasted, these

variables can't be reviewed before run-time. In

other words, only static variables or expression

can be reviewed. Moreover, in our system

SOFL Specification is auto-generated and

read-only, which means users are not allowed

to modify it casually. This helps us to lower the

complexity of checking errors, as a result,

reviewer in Soflipse only needs to check the

matching of parameters from pre and post

condition of neighboring processes. Any errors

like syntax or semantic has already been found

out in SOFL Compiler.

Another point that readers should keep in mind

is that only contradiction expression will be

checked out, for there doesn't exist a single

value that satisfied this expression. For any

expression, if there exist one (or more) value(s)

satisfying the expression, it shouldn't be

checked out as errors. For instance, for any

integer x, expression x>5 and x<5 is a

contradiction expression which should be

checked out, while another expression x>5 and

x <=5 is not.

Reviewing job can be divided into two steps,

which will be discussed in the following:

Existence Review: Existence review is the first

step of reviewing which checks correctness of

parameter of a process. Correctness here

includes parameter number, sequence, etc.

Formally, let's define,

)(PN i as the number of input parameter

of process P;

)(PNo as the number of output

parameter of process P;

)(Pinput as the input stream of process

P;

)(Poutput as the output stream of

process P;

),(vPI i as the index of the input variable

v in the input stream;

),(vPIo as the index of the output

variable v in the output stream;

and we assume that P1 and P2 are two

neighboring processes, they must satisfy:

1.)()(21 PNPN io 

2.)(|)](:[21 PinputinsetvPoutputvforall

3.),(),(|)](:[211 vPIvPIPoutputvforall io 

The first equation proposed that if two

processes are neighboring, then the number of

parameters of these two processes must be

equal. The second formula means that if two

processes are neighboring, for all the

parameter variable appears in the first process

must also appear in the second process. In

other words, it was not allowed that the second

process used some variables that didn't appear

in the first process. The third formula indicates

that the output stream of the first process must

be the same as the input stream of the second

process, including their indexes and

sequences.

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 94

It can be inferred from these three rules that

any errors such as parameter number

difference or type mismatching are not allowed.

It should also be noted that parameter types

are not necessarily be the same. In SOFL, all

types are structured like a tree just as JAVA.

For example, integer can be cast to double,

and nat can also be cast to nat0 which

composed by nat and 0. One type can always

be cast to another type whose range is bigger

than the original one, but not vice versa.

All these parameter information can be gotten

from SOFL Specification. And all the link

information among processes is provided from

CDFD. Checking these three rules won't take a

long time, so it is able to be implemented and

used.

Satisfying Review: Those processes which

pass existence review can't be treated as

correct ones, for they also have to pass the

second step, satisfying review. Satisfying

review means two processes are neighboring

but the post-condition of the first process will

never satisfy the pre-condition of the second

process. It is clearly that pre-condition and

post-condition always return boolean values.

So applying the knowledge from discrete

mathematics here, these two conditions can be

treated as two propositions (named P and Q),

and we need to judge the value of the

expression P → Q [19]. The value of this

expression totally has three situations:

tautology, contradiction and uncertain situation.

Just as what has already been pointed out,

only contradiction should be reviewed, for at

least one value satisfied the expression in

tautology and uncertain situation [7]. If P → Q

is contradiction, this workflow may be not able

to run to the end. So users should be noticed

about these types of errors.

According to the SOFL grammar, pre and post

condition are both expressions, which can still

be divided into six types: unary-expression,

apply-expression, basic-expression, quantified-

expression, negation-expression and

relational-expression. Among these six types,

relational-expression, quantified-expression

and binary operator in basic-expression can

lead to contradiction. (Actually negation-

expression can also lead to contradiction, but

this kind of expression is only opposite to

another expression, so it can also be ignored.)

These three situations will be discussed

further.

Relational-expression is used to judge the type

of an expression according to SOFL grammar.

For instance, is_int(2+3) is a simple relational-

expression. In SOFL, each variable must has

its type when they are declared, so actually its

type is confirmed and available, which means

results of all these relational-expressions can

be calculated and obtained in compile-time.

Thus, whether it will lead to contradiction is

also easy to be inferred.

Quantified-expression in SOFL is similar to

quantifier in logic. It can also be divided into

universal quantifier and existential quantifier.

Both this two types are composed by

declaration part and assertion part. What

satisfying review needs to do is to check

whether they share a same structure in

assertion part. If so, according to different

structure, different judge method should be

introduced. Also take the previous expression

as example, if there exists another universal

quantified-expression whose assertion part is

„x = temp mod 2', then we know these two

share the same structure, and structure „mod'

also tells us that these two are tautology, for 4

and 2 are not coprime. Surely, the operator

„mod' won't lead to contradiction, but some

operators like inset and notin will, and the

system should be able to detect errors like

these.

The word „structure' in the last paragraph has

the following conception: Two expressions

share the same structure if their parent nodes

share the same type. It is obvious that

universal quantified-expression won‟t lead to

contradiction with the simple plus operator. So

in most cases, contradiction happens only

when two expressions have the same

structure. What's more, assertion part is an

expression recursively, so the review algorithm

should also be recursively invoked.

For binary operator in basic-expression, their

structure also needs to be checked. But here

comes a different point comparing with

quantified-expression, which is that

contradiction is still possible to be detected

even when two operators have different

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 95

structures, for instance x < 5 and x > 6. As a

matter of fact, binary operators have more

close relationships among themselves. Some

operators can be classified into the same

operator system, such as „<=' and „<', „>=' and

„>', while others express the opposite meaning,

such as „=' and „<>', „inset' and „notin'.

Mathematical inference can be done within

same operator system and opposite operator

system, like x > 5 and x >=6. Usually,

contradiction happens in opposite operator

system, so more emphasis should be put on

these operators.

Another interesting topic is that many binary

operators have a feature called transitivity,

which allows us to simplify some expressions

like x > y + 3, y > 5 is equivalent to x > 8. And

the problem about what kind of operators can

be simplified while others can't still depends on

the operator system they are located in.

If a workflow passes satisfying review, it is

proved that it doesn't contain contradiction,

which in other words means that there at least

exists one situation that it can run correctly. But

it doesn't mean this workflow can run correctly

on every situation no matter what the input and

environment is, unless it is a tautology. This is

a classic mistakes many people

misunderstanding about formal methods.

5. Evaluation

We have designed a sample workflow and

using Soflipse to model and review it. Our

sample workflow is a small part of complicated

software which can always be seen in

examination score management. In university,

when a semester ends, professor needs to

register all his students' score one by one.

Each time he succeeded in registering a score

to database, the system adds the new score

together with all the scores already existed in

database and calculate an average score. In

this short workflow, many basic elements are

contained such as processes, input/output

stream and database operation. In order to

show as many function of SOFL modeling as

possible, a sub-process is used to calculate the

average score. For the reason that this sample

workflow is picked-up from real-life, so it can be

believed that if SOFL can model this workflow

well, it is managed to model many usable and

common workflow around our life.

After analyzing this workflow, we can divide it

into two big steps which is registering score

and calculating average score. For the first

step, it takes new score and student's ID as

input and returns his score as output, for it will

still be used to calculate average score.

Database accessing is also necessary for

registering score, which in SOFL named

existing data store. For the second, calculating

average score has been decomposed into a

sub-module, which is made up of calculating

sum of all scores and calculating average

score. In Soflipse, we can easily build up a

CDFD meeting the requirements above. Figure

6 shows the CDFD of the top level while

Figure 7 indicates the sub-CDFD of the

decomposition „calculating average score'.

Figure 6. Top level CDFD of sample workflow

Figure 7. sub-CDFD of sample workflow

Next step is to fill in some key information to

complete the model. For example we can

define some type and constants, such as

score_type = score, student_no_type = string,

or score_max = 100 and score_min = 0. Thus,

we can give out the pre-condition of the first

process, registering score, which is:

score <= score_max and

score >= score_min and

student_no <> "" ……………… (1)

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 96

And its post-condition is:

score_db_1=override(~score_db_1,

map:{student_no -> score}) and

score_2 = score ……………… (2)

Here, the first equation of post-condition uses a

built-in function named „override' in map, which

means override the first map into the second

one. And in SOFL (and many other formal

language), variable with prime mark means the

same variable but of old version. So this

equation indicates that adding a new pair from

student_no to score to the map stored in

database. Pre-condition and post-condition of

the second process is similar as the first one,

so it will be omitted.

Besides pre and post-condition of each

process, there also exists a SOFL function in

the sub-module which is responsible to

calculate sum of all scores.

function calculate_sum (score:score_type,

 total:int):int ==score+total

end_function;

What should also be noticed is that variable

and function in SOFL also have hierarchy

relationship like many object-oriented

programming languages. Variables or functions

declared in the parent module are available to

all its children modules, but not vice versa.

After finishing the job of completing main

information in CDFD, we can switch to SOFL

Specification editor to see whether there are

some codes red-underlined. Moreover, a

semantic tree will be displayed in the

Properties view under the main editor, which

shows the main structure of this SOFL model.

Through the semantic tree, we can see much

information about this SOFL model, and review

can also be done relying on this information.

One more important thing is that SOFL

modeling and reviewing job doesn't really costs

so much time as we thought about formal

methods before. But frankly speaking, when

coming across large-scale and complicated

workflow, things may have changed.

Performance is always the bottleneck of the

formal methods in developing software.

6. Related Work

With the rapid development of workflow

technology, it is very important for workflow

developer to describe the workflow

specification precisely. Aiming at BPEL lack of

a formal semantics and contains ambiguities,

several research have been taken to formalize

BPEL [15], using automata, process algebra,

and Petri nets and so on.

Automata is a public and base model of formal

specification for systems [9], which contains a

set of states, actions, transitions between

states, and an initial state, so it is convenient to

describe the workflow. Diaz [4] shows a case

study on converting business processes written

in BPEL-WSCDL to timed automata. In paper

[5], Fu develops a tool to translate the BPEL

specifications to guarded automata. Although

automata can well describe the BPEL, in terms

of large scale system and its limitation of

describing complicated functions, automata's

accuracy cannot be guaranteed.

Process algebras can be also used in

describing the workflow. It can be divided into

many forms, such as ACP (Algebra of

Communicating Processes), CCS (Calculus of

Communicating Systems), CSP

(Communication Sequential Process) and so

on. Wong [20] discusses the workflow model

described by AGP. In terms of formal

verification technology, Salaün [17] presents a

method of verifying business processes based

on processing algebras with a particular focus

on their interactions. In paper [18], Salimifard

presents the translation rule between BPEL

and process algebras. However, process

algebras cannot support dynamic process

instantiation and correlation set. It also cannot

detect the dynamic structure alteration.

As Petri nets have rigorous and profound math

fundamental, it can be used to analyze and

verify workflow strictly. There are many

researches on building workflow model based

on Petri nets. It is a prevalent method on

describing business process using the theory

of Petri nets. Papers [8] [21] [22] describe the

translation rule from BPEL to Petri nets. In

paper [23], the authors can translate

composition specified in BPEL into CP-nets,

which can be analyzed and verified by many

specialized tools. However, Petri net is still

based on graphical notation and its

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 97

expressiveness is limited for large scale

systems. Besides, for those system involving

rich data types and high logical complexity

specification, Petri nets no more can't describe

precisely.

Comparing to these researches which is

comparatively mature, SOFL is kind of new

comer to this family. It was first proposed in the

90s of the last century and didn't attract many

people's attention even till now. But as listed

above, all those formal methods have a

common disadvantage which usually needs

humans to be involved. Using SOFL to review

and validate is done automatically, whose

mathematical inference can be done by

computers itself. Of course, not all the workflow

can be modeled and reviewed by SOFL now

with the limitation of its express ability and

inference performance, it is still convinced that

as the researches on SOFL goes on, formal

methods and SOFL will get more usage.

7. Conclusion

As the wide spread of software using in our

daily life, the requirements for software with

higher quality, better performance and lower

cost of maintenance are become increasingly

high. Using classic methods like standard

developing process and complete software

testing really contribute to make software

better and better, but these seem not enough.

Another way that helps us to improve the

quality of software is called formal methods,

which is trying to use mathematical and logic

inference to ensure the correctness of

software. The proposition of formal methods is

later than many mature technologies like

iterative development, but its potential attracts

much people and will become a hot point for

future research.

SOFL is a relatively new formal language

which can be used to model, review and

validate workflow from software. SOFL

Specification and CDFD are both used to

describe a workflow from textual and graphical

angles respectively. Using SOFL to model a

project is quite convenient and efficient, for it

combines graphic and text together. What's

more, a lot of researches have already been

made on the review and validate of SOFL-

modeled workflow. Our method can be

generally divided into three steps: build up a

compiler to eliminate lexical and syntax errors;

analysis the syntax tree and transfer it to

semantic tree to find out semantic errors such

as undefined variable or duplicate function

name; review its existence and satisfying to

see whether there exists contradiction. After all

these jobs, we can prove that a workflow is

correct which means it won't crash or terminate

by structural errors.

In order to implement and prove the feasibility

of our methods, we build up an eclipse plug-in

project named Soflipse. It is a tool that enables

users to draw CDFD of his own workflow and

help to compile, review and validate SOFL

Specification which generated automatically

after the finish of CDFD and other information

such as pre and post-condition. We have also

built up a sample workflow and test it on our

system, and the result seems to be consistent

with what we expected.

Next we are mean to continue doing some

researches on SOFL and improve the Soflipse

system. Our future work consists of three parts:

 Building up more sample workflow and test

it on Soflipse to make it more robust and

modify it if there exist bugs

 Think more about the review algorithm of

SOFL. Recent algorithm about satisfying

review, especially when dealing with

assertion part of quantified-expression and

operator system is fairly complicated. We

want to improve it in the future.

 Do more testing on Soflipse, not only for

functional requirements, but also some

other points such as performance.

References

[1] Eclipse. http://www.eclipse.org.

[2] Abraham Silberschatz, Henry F. Korth,

“Database System Concepts”, 4th Ed.,

McGraw-Hill Education, pp. 210-212, 2006.

[3] Appel, “Modern Compiler Implementation in

Java”, Cambridge, University Press, pp. 214-

228., 2003.

[4] Diaz G, Pardo JJ and C. F., “Automatic

translation of wscdl choreographies to timed

automata”, in Lecture Notes in Computer

Science, Vol.3670, pp.230–242, 2005.

http://www.eclipse.org/

Soflipse : Tool for Automatic Modelling and Reviewing SOFL Workflows Y. Wang et al.

ISSN: 2231-1998 © 2011, Heber Publications, www.ijctis.com 98

[5] B. T. Fu X and S. J., “Analysis of interacting

bpel web services”, in Proc. of 13th

International Conference on the World Wide

Web, pp.621–630, 2004.

[6] Genxing Yang and Lizhi Cai, “Software Quality

Assurance Testing and Evaluating”, Tsing Hua

University, pp.51-57, 2007.

[7] Hamilton, “Logic for Mathematicians”,

Cambridge University Press, pp.45-50, 1978.

[8] Verbeek, “Analyzing bpel processes using petri

nets”, in Proc. of 2nd International Workshop

on Applications of Petri Nets to Coordination,

Workflow and Business Process Management,

pp.59–78, 2005.

[9] Hopcroft JE and U. JD., “Introduction to

Automata Theory, Languages, and

Computation”, 3rd Ed., Addison-Wesley:

Reading, pp.350-367, 2006.

[10] X. Huang, “The reliability, security and quality

in software”, Publishing House of Electronics

Industry, Beijing, pp. 12-14, 2002.

[11] J.J.Marciniak, “Encyclopedia of Software

Engineering”, 2nd Ed., Wiley publications, pp.

372-379,1994.

[12] S. Liu, “A property-based approach to

reviewing formal specifications for

consistency”, in Proc. of 16th International

Conference on Software Systems Engineering

and Their Applications, pp.1–6, 2003.

[13] S. Liu, “An automated rigorous review method

for verifying and validating formal

specifications”, in Proc. of 2nd International

Symposium on Automated Technology for

Verification and Analysis, pp.15–19, 2004.

[14] S. Liu, “Formal Engineering for Industrial

Software Development”, Springer, pp. 342-351,

2008.

[15] S. Morimoto, “A Survey of formal verification for

business process modeling”, in Lecture Notes

in Computer Science, Vol.5102, pp.514–522,

2008.

[16] Pressman R.S., “Software Engineering, a

practitioner‟s approach”, McGraw-Hill

Science/Engineering/Math, pp. 420-432, 2009.

[17] B. L. Salan G and S. M., “Describing and

reasoning on web services using process

algebra”, in Proc. of International Conference

on Web Services, pp.43–50, 2004.

[18] W.M.Salimifard, “Petri net-based modeling of

workflow systems: an overview”, European

Journal of Operational Research, Vol.134,

pp.664–676, 2001.

[19] A.A.Stolyar, “Introduction to Elementary

Mathematical Logic”, Dover Publications Inc.,

pp.53-68, 1970.

[20] W. K. F. B. T and Y. R. A., “Workflow model for

chinese business processes, International

Journal of Computer Processing of Oriental

Languages, pp. 233–258, 2001.

[21] W. van der Aalst, “Verification of workflow

nets”, in Proc. of 18th International Conference

on Application and Theory of Petri Nets, in

Lecture Notes in Computer Science, Toulouse,

France, Vol.1248, pp.407–426, 1997.

[22] Van der Aalst, M. Dumas and H.M.W., “An

approach based on bpel and petri nets

(extended version)”, in Technical Report BPM-

05-25, BPMcenter.org, pp.210-221, 2005.

[23] J. Y. Yang, Q.Tan and F.Liu., “Transformation

bpel to cp-nets for verifying web services

composition”, in Proc. of International

Conference on Next Generation Web Services

practices, pp.327-330, 2005.

[24] E. Yourdon, “Modern Structured Analysis”, 1st

Ed., Prentice Hall International Inc., pp.102-

122, 1989.

