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Abstract—Hadoop has become one popular framework to 
process massive data sets in a large scale cluster.  However, it is 
observed that the detection of the failed worker is delayed, 
which may result in a significant increase in the completion 
time of jobs with different workload. To cope with it, we 
present two mechanisms: Adaptive interval and Reputation-
based Detector that support Hadoop to detect the failed 
worker in the shortest time. The Adaptive interval is trying to 
dynamically configure the expiration time which is adaptive to 
the job size. The Reputation-based Detector is trying to 
evaluate the reputation of each worker. Once the reputation of 
a worker is lower than a threshold, then the worker will be 
considered as a failed worker. In our experiments, we 
demonstrate that both of these strategies have achieved great 
improvement in the detection of the failed worker. Specifically, 
the Adaptive interval has a relatively better performance with 
small jobs, while the Reputation-based Detector is more 
suitable for large jobs. 

I. INTRODUCTION 
Apache Hadoop [1], an open-source implementation of 

Google’s MapReduce [2], is a widely-accepted technology 
today for massive data processing on large scale clusters. 
Hadoop is a composition of MapReduce and the Hadoop 
distributed file system (HDFS) [19] which implements many 
features of the Google’s DFS [10]. There are four major 
components in Hadoop: JobTracker, TaskTracker for 
MapReduce, NameNode and DataNode for HDFS. 
JobTracker is responsible for scheduling jobs and tasks onto 
TaskTracker, and NameNode is in charge of maintaining the 
index of all the massive files. The advantage of Hadoop is 
that it allows programmers to focus on designing their 
application data flows but hide messy details of 
parallelization, fault-tolerance, data distribution and load 
balancing in a library.  

Due to the popularity of Hadoop, many researchers seek 
to extend the functionality of MapReduce or optimize its 
performance [8] [9] [12] [18] [20]. One of the most 
interesting research hotspots is how to enhance the fault 
tolerance of Hadoop. As the volume of the data stored in the 
cluster grows dramtically, the cluster will experience more 
failures. According to Jeff Dean [3] [4], 1-5% of the disk 
drivers will die and servers will crash at least twice (2-4% 
failure rate). A typical new cluster will have more than 1000 
machine failures in the first year. Therefore, dealing with the 
fault tolerance problem is a non-trivial task. 

To handle with the failures, both software and hardware 
failures, MapReduce use a re-execution strategy which will 

take the following actions [2]: if it is on worker failure, then 
MapReduce framework will (1) detect failure via periodic 
heartbeats, (2) re-execute completed and in-progress map 
tasks on that worker, and (3) re-execute in progress reduce 
tasks. If it is on master failure, state can be checkpointed into 
HDFS so as for a new master to recover and continue from 
the last checkpoint. This re-execution mechanism can 
achieve good fault tolerance. However, it is observed from 
our experiments that the detection of the failed worker in 
Hadoop has a certain delay. This delayed detection of the 
failure will have several bad consequences:  

� Execution time for a small job increases 
significantly. A small job, which will finish in half a 
minute under no failure, will probably finish beyond 
10 minutes if there is a failure occurring at the 
runtime. This is because Hadoop set 10 minutes by 
default for the expiry time of each TaskTracker. 
Therefore, for a small job, the default expiry interval 
is too large to find out the lost worker quickly, 
consequently increasing the completion time of 
small jobs significantly.  

� A Healthy node will possibly be added into blacklist 
by mistake. In Hadoop the blacklist mechanism is 
used to mark unhealthy nodes in the cluster which 
has more than four tasks failed on the node. The 
node in the blacklist will never be assigned with any 
tasks on it for a period of time. If failure happens in 
the reduce phase of a job, some tasks on the healthy 
node may fail because they cannot correctly fetch the 
map data from the failed worker. As a result, these 
healthy nodes will be possibly added into the 
blacklist by mistake, which will further increase the 
execution time.  

� Too many unnecessary backup tasks scheduled. This 
is because Hadoop will consider those tasks on the 
failed worker as slow tasks, so that they assign 
backup tasks to re-execute them. 

This paper focuses on how to fast detect the failed 
worker in a Hadoop cluster. It should be noted that by failure, 
it refers to the worker failure. In this paper, we propose two 
mechanisms to achieve the goal of fast failure detection in 
Hadoop via heartbeat. Firstly, we introduce the Adaptive 
interval which will dynamically configure the expiry time 
adapted to the various sizes of jobs. As the experiments show, 
the Adaptive interval is advantageous to the small jobs. To 
handle with large jobs, the Reputation-based Detector was 
developed. In the Reputation-Based Detector, JobTracker is 
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in charge of evaluating the reputation of each worker 
according the reports of the failed fetch-errors from each 
worker.  Once the reputation of one worker is lower than a 
bound, the master will mark this worker as a failed tracker. 
As the experiments show, these two mechanisms can achieve 
a better performance in reducing the time to detect the 
worker failure than the original Hadoop, thus reducing the 
job completion time. 

The roadmap for the rest of the paper is as follows. In 
Section II, we discuss some related work about the fault 
tolerance optimizations. In Section III to Section V, we will 
show the architecture design and explain how the Adaptive 
interval and Reputation-based Detector work respectively. 
We further demonstrate how the experiments are carried out 
and compare the performance of the two proposed methods 
with the original Hadoop in Section V. 

II. RELATED WORK 
Recently there are lots of efforts trying to enhance the 

fault tolerance of Hadoop. Speculative execution is an 
effective way to guarantee the fault tolerance and response 
time. Speculative execution is to re-execute slow tasks which 
have relatively low progress scores. According to Zaharia et 
al [5], the speculative execution can achieve good 
performance in a homogeneous environment but not in a 
heterogeneous environment. It is because the original job 
progress score estimating algorithm cannot find the real slow 
tasks in a heterogeneous environment. Therefore, they 
proposed a new algorithm called Longest Approximate Time 
to End (LATE), aiming to find the real slow tasks. LATE 
first estimates the remaining time for each tasks, then assigns 
the speculative tasks for those tasks with the longest 
remaining time to end. 

Another attempt is trying to improve the availability of 
Hadoop cluster by avoiding single point of failure (SPOF). 
Hadoop Distributed File System (HDFS) and Hadoop 
MapReduce both adopt master-slave architecture, so that 
SPOF can occur in the NameNode in HDFS and JobTracker 
in MapReduce. Either of their failure will make the entire 
cluster un-available. Feng Wang et al. proposed a metadata 
replication-based solution which involves three major phases 
[6]: in initialization phase, each standby/slave node is 
registered to active/primary node and its initial metadata 
(such as version file and file system image) are caught up 
with those of active/primary node; in replication phase, the 
runtime metadata (such as edit logs and lease states) for 
failover in future are replicated; in failover phase, 
standby/new elected primary node takes over all 
communications. 

Other studies are trying to protect the intermediate data 
since intermediate key-value pairs are the most important 
data transferred between the nodes. Steven Y. Ko et al. 
develop the Intermediate Storage System (ISS) [7] to keep 
the intermediate data safe. ISS use an asynchronous rack-
level selective replication mechanism, which minimizes the 
effect of run-time server failures on the availability of 
intermediate data. Another effort to keep intermediate data 
safe is from Bicer [15], et al. In their solution, the reduction 
object after processing of a certain number of elements on 

each node is copied to another location periodically. 
Therefore, if one worker fails, its reduction values exist on 
another node. Their system design can be viewed as a 
checkpoint-based approach. 

Regarding the study of the worker expiry time in Hadoop, 
MOON [17] introduces a new state for each worker called 
hibernate state and a new parameter into Hadoop called 
NodeHibernateInterval which will work together with 
NodeExpiryInterval. The worker enters into the hibernate 
state if no heartbeats are received for more than the 
NodeHibernateInterval. NodeHibernateInterval is much 
shorter than the NodeExpiryInterval. If a worker is in 
hibernate state, it will not service any request to avoid 
unnecessary access attempts from clients. Compared with it, 
our study focuses on variable expiry intervals which are 
adaptive to the job sizes rather than a fixed or static interval.  

Overall, our study differs from the work mentioned 
above in the time to handle with failure. All the above 
studies except the MOON are attempting to improve 
recovery mechanisms which are effective when the failure is 
detected and located. However, our work is much like a pro-
active way, trying to detect the lost workers as quickly as 
possible. If the cluster is not aware of the failure in shortest 
short time, the above work cannot get the expected 
performance. To best of our knowledge, it is the first attempt 
to guarantee the fault tolerance of Hadoop by adaptively 
detecting the failed workers. 

III. ARCHITECTURE DESIGN 
Original failure detection in Hadoop is based on the 

expiry thread which monitors the heartbeats from 
TaskTracker and periodically checks whether the time 
between the current and last heartbeat expires. As is shown 
in Figure 1, TaskTracker will send its heartbeat every 3 
seconds by default and the module called Heartbeat 
Processor will process these heartbeats and reply a new 
heartbeat back to TaskTracker. Then the expiry thread will 
utilize these heartbeats received on JobTracker to 
periodically check the workers whether they are dead or 
alive. If the expiry thread does not receive the heartbeats 
from one worker within a period of time, which is 10 
minutes by default, then the worker will be considered as 
dead.  

To cope with the delayed failure detection, we develop 
two modules for JobTracker which are marked with shadow 
in the Figure 1. One is Adaptive Interval, which will 
configure the heartbeat interval and node expiry interval time 
based on that estimating time. It needs Job Estimator to 
estimate the job execution time for Adaptive Interval. 
Another mechanism is called Reputation-based Detector, 
which is responsible for collecting the heartbeats from each 
TaskTracker and extracting fetch-error information from 
these heartbeats. The Reputation-based Detector will use 
these fetch-errors to evaluate the reputation for each 
TaskTracker. Basically, these two mechanisms proposed in 
this paper are based on the heartbeat because they depend on 
the heartbeat to either check expiry or deliver messages. 
Specifically, as the figure 1 shows, the new processing flow 
is as following:  
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Figure 1.  Architecture Design of the Adaptive Failure Detction 

(1) JobClient first receives a request from users, and then 
submits this request to JobTracker.  

(2) JobInit prepares the necessary data for the job, 
including the data locations, executing jars and etc.  

(3) After initializing the job, general information about the 
job flows into the Job Estimator, which will analyze this 
information to estimate the execution time of the job. 

(4) Then, the Adaptive interval will use the estimated time 
to calculate the new adaptive expiry time for each job and 
configure it into expiry thread and the heartbeat interval at 
the runtime. The detection method for the Adaptive interval 
is exactly same as the original Hadoop but differs in its 
expiry time interval.  

(5) At the same time, the Reputation-based Detector is 
collecting the fetch-errors extracted from the heartbeat and 
evaluating the reputation for each TaskTracker. If the 
reputation of one TaskTracker is lower than the lowest 
bound, JobTracker will mark that TaskTracker as a failed 
TaskTracker. 

In Sections IV and V, the details about how these two 
mechanisms work will be explained in details. 

IV. ADAPTIVE INTERVAL 
The design goal of the adaptive interval is to enable 

Hadoop to dynamically configure its expiry interval which is 
adaptive to the job size, thus detecting the failed worker in 
the shortest time. To achieve that goal, the relationship 
between the heartbeat interval and the job execution time 
will be discuss firstly. And then a job estimating model will 
be built to estimate the execution time. Finally, we will 
introduce the Adaptive Interval which will use the estimating 
model to calculate the expiry interval and achieve the design 
goal. 

A. Adaptive  Heartbeat Interval 
The adaptive heartbeat interval means that the heartbeat 

interval is adaptive to the job size. Why do Hadoop need 
adaptive heartbeat interval? First, having a longer heartbeat 
interval means there is a time delay in the time when 
TaskTracker reports its available slots to JobTracker. In 
contrast, a low heartbeat interval value means that 
TaskTracker can report its status about its available slots and 
failure information to JobTracker without any delay, but the 
relatively frequent interval will result in the overloading of 
the master [16]. It is confirmed in the experiments as showed 
in Figure 2. Overall, the job execution time with the default 3 

seconds interval has the largest execution time. As the 
interval time decreases, the execution time has decreased. In 
contrast, to finish a job, the average number of heartbeats 
received by JobTracker increases significantly as the 
heartbeat interval becomes shorter. Therefore, it is important 
to give a right value to the heartbeat interval to balance the 
overload of JobTracker and the execution time. 

 

 
Figure 2.  Job Execution Time and Heartbeat Num over various Heartbeat 

Intervals for the sort program 

We observe that the reduce tasks spend more time than 
the map tasks. Therefore, it is unnecessary to use a uniform 
interval for both map and reduce tasks. We develop a two-
phase interval: map-phase interval and reduce-phase interval, 
to adaptively set the heartbeat interval. When the job runs in 
the map phase, JobTracker and TaskTracker adopts the map-
phase interval. When the job runs in the reduce phase, the 
reduce-phase interval is adopted, which is relatively longer 
than the map-phase interval. In the Figure 2, the last point in 
both line graphs shows the results of the two-phase interval. 
In this specific experiment, the map phase interval is 1 
second and the reduce phase interval is 3 seconds. The 
execution time for the job is 12.5 percent less than the 
default 3 seconds. Compared with other heartbeat intervals 
except the default 3s, the two-phase heartbeat interval has 
much smaller heartbeat number which is manifest to ease the 
burden of the master. It should be noted that the two intervals 
are adaptive to the map and reduce task execution time 
respectively. The execution time for both map and reduce 
task is estimated in the following sector Job Estimator. 

B. Job Estimator 
There are already several efforts to estimate Hadoop job 

execution time [13] [14], which are quite similar with ours. 
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The estimating model is based on the following assumptions: 
(1) the cluster consists of homogeneous nodes, so that the 
time of processing a unit of data is equal; (2) distribution of 
the input data is uniform, so that the both map tasks and 
reduce tasks have the same amount of data to process. 
Several notations are specified as described as below: 

� α: Total input data for map tasks. 
� �� and ��: Time to process unit map and reduce data 

respectively. 
� �� and ��: Average number of running slots for map 

and reduce tasks respectively. 
� ��: Time to transfer unit data in the shuffle phase. 
� ρ: The ratio of the amount of map input data and 

map output data, which depends on the characteristic 
of the different jobs. Different workload with 
different application logic may have different ρ. 

� β: Total map output data where β =  ρ ∗ α. 
Hadoop jobs have three major phases: map, shuffle and 

reduce. In map phase, each task keeps all the intermediate 
results into the local file system. Before reduce phase, reduce 
tasks have to prepare the input data, which is often called 
shuffle phase. In shuffle phase, reduce tasks need to fetch 
data from the remote workers. We assume that the amount of 
the data to shuffle is the same amount as the map output data. 
But in practice, the data to shuffle is relatively smaller than 
the amount of the map output data. After shuffling, reduce 
tasks can perform reduce task and keep all of its results into 
HDFS. Therefore, the estimating execution time (EET) 
should consist of three components: time to process map data, 
time to shuffle the data and time to process data in the reduce 
phase, which is demonstrated in (1). 

� ��� = α ∗ �
��

+ � ∗ �� + � ∗ �
��

� ����

C. Adaptive Expiry Interval 
The expiry interval is closely related to the heartbeat 

interval. To obtain the same level of the fault tolerance for 
the various jobs, the expiry interval should be adaptive to the 
job size.  

Hadoop has a TaskTracker-level tuning parameter: 
mapred.tasktracker.expiry.interval, the default value of 
which in Hadoop is 10 minutes, which is fixed and 
disadvantageous to small jobs. Our proposal use (1) to 
estimate the execution time for each job at the runtime and 
configure that parameter with the new expiry interval time. 
For large jobs whose execution time is beyond an upper 
bound value, the upper bound value will be used instead to 
forbid those large jobs to use its execution time as expiry 
interval. This upper bound value can be set based on the 
cluster size and workload characteristic. In the experiments, 
this upper bound value is 10 minutes. To conclude, the final 
expiry interval algorithm is defined in (2), where TET 
denotes the TaskTrackerExpiryTime. 

TET = ����    �� EET < 10
10       ��  EET ≥ 10       ��� 

After choosing the expiry interval time, the expiry thread 
in Heartbeat Processor will use this value to monitor the 
entire cluster. If JobTracker has not received a heartbeat 
from one worker within that interval, JobTracker will 
consider that worker as a failed worker.  

V. REPUTATION-BASED DETECTOR 
The Reputation-Based Detector aims to evaluate the 

reputation of each worker based on the fetch-errors 
information monitored by JobTracker, thus reducing the time 
to detect the failed worker.  

To evaluate the reputation, we first need to explain how 
TaskTracker can lose its reputation. It is observed that the 
fetch-errors is one of the most common exceptions caught by 
TaskTracker when its reduce task cannot finish its copy from 
the remote worker, primary because the remote worker has 
failed and its intermediate data have lost. In the proposed 
solution, the worker who has caught these fetch-errors will 
report them to JobTracker via heartbeat because it suspects 
that the remote worker is probably failed. By referring to the 
suspected information, we call them gossips later on because 
some of the suspect information is true while others may be 
not. After receiving these gossips across the workers, 
JobTracker will subtract corresponding penalty for the 
reputation to the suspicious worker. When the reputation is 
lower than a threshold, the suspicious worker will be marked 
as a failed worker. Before explaining how the reputation-
based detector functions, we specify several important 
objects used in this mechanism as described as below:  

� gossip< A���� , B� , Time, Penalty>: Each Time 
JobTracker receives heartbeat from TaskTracker, it 
will extract the gossips from heartbeat. Each gossip 
means the worker �����  meets a fetch-error from 
the worker B�, thus suspecting that the worker B� 
has a failure at the Time. The field Penalty means 
how much reputation should be subtracted from the 
current reputation of the worker B� , which is 
calculated based on the past gossips. 

� gossipQueues<TrackerId,Queue<Gossip>>: 
JobTracker maintains a gossip queue for each 
worker. It is where all the gossips are kept on 
JobTracker. Each time JobTracker receives a gossip 
in the heartbeat, it will put the gossip into the 
corresponding queue. Each gossip queue has an 
expiry time. If the time, between the newly gossip 
and the latest gossip in the same queue, is longer 
than the expiry time, all the expired gossips will be 
removed from the queue. 

� taskTrackerToReputation<TrackerId, Value>: It is a 
map which contains all the reputation value to each 
TaskTracker. If the tracker id is not found in this 
map, a new object will be created into it with an 
initial reputation. If the reputation of one tracker is 
lower than a threshold value, the corresponding 
tracker object will be deleted from the map. 

It is interesting to note that the sematic information 
contained in these gossips is extremely different. We explore 
the temporal and spatial characteristics among these gossips. 
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1)  Temporal: The gossips tend to be gathered within a 
short period of time.  The more gossips received within that 
time, the more penalties will be given to that TaskTracker. 
For example, three gossips collected at t�, t� and t� in Figure 
3 (a) are much more believable than the situation where there 
is only one gossip reporting during the same period. If the 
worker A����  suspects another misbehavior of the worker 
B�, it needs to re-caculate the reputation value with what  
have already been stored in its gossip queue regarding the 
worker B�. For each gossip received, a penalty value will be 
given to the current reputation of the suspicious worker. The 
more gossips received, the higher penalty value will be 
given.  

 
(a) 

 
(b) 

Figure 3.  Example of the gossip queue for the worker B 

We introduce a tuning parameter called incremental 
penalty ratio to give a penalty to each gossip. Therefore, the 
function is defined in (3) to calculate the gossip penalty in 
the Figure 2 where incremental penalty ratio is denoted as �. 
!(�, ") and !#�(�, ") denote the penalty calculated for the 
current gossip and previous gossip from A to B, respectively. 

               !(�, ") = � ∗ !#�(�, ")                         ����

2) Spatial: The more different workers involved to 
report, the more JobTracker is convinced that the particular 
TaskTracker has a failure. For example, even though the 
queues in the Figure 3 (a) and (b) have exactly the same 
temporal characteristic, the queue in the figure 2 will be 
more believable. It is because that the Figure 3 (b) has more 
workers involved to report the worker B. Therefore, higher 
penalty weight will be assigned to the gossips from the 
worker C.  

Let Φ(B) = {α�, α�, α� ⋯ ⋯ α�} be the set of the different 
workers reporting the suspicion of B. If there is a gossip 
from a new worker, the following function will be used to 
calculate the new penalty value, 

!(α&, ") = ' ∗ !�(α&, ")       ��  α& ∉  Φ(B)       �	� 

where '  and !�(α&, ")  represent the size of Φ(B)  and the 
initial penalty repectively. After calculating the penalty, this 
worker will be added into the set  Φ(B). This set will be 
updated periodically because some gossips will be out of 

date in the queue, and some workers will be removed out of 
the set. Combined with (3), we define the final function: 

!(α&, ") = �� ∗ !#�(α&, ")    �� α& ∈  Φ(B)
' ∗ !�(α&, ")       ��  α& ∉  Φ(B)       �
� 

When the reputation of one worker is lower than a 
threshold, JobTracker will believe that worker failed and is 
lost. This threshold value can be set based on the size of the 
cluster and the historical data.  

However, how can a worker gain its reputation? A 
worker can gain its reputation via heartbeat as well. Each 
time when JobTracker receives a heartbeat, the worker 
sending this heartbeat will gain an increase on its reputation. 
Even if it is possible to report gossips by mistake, the 
worker still can gain its reputation by sending its heartbeats 
to JobTracker. The reputation-based detector has a upper-
bound for the maximum repuation, which means that if the 
reputation of one TaskTracker is equal to the upper-bound, 
it cannot gain reputation any more. Figure 4 shows our 
pseudo code of the reputation-based detector implemented in 
the prototype system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Pseudo code of the Reputation-based Detector 

�1 �2 �3

C     BA     B A     B

�1 �2 �3

A     BA     B A     B

 
Algorithm Reputation-based Detector algorithm 
 
1 procedure RBD 
2       input: hb 
         output: failure signal 

variable definition:  
1. hb: Represent the received heartbeat  
2. repFrom: Represent the reputation of the worker 

who has transmitted the heartbeat;  
3. repTo: Represent the reputation of the 

suspicious worker. 
4. gp: short for the gossip. 

 
3    repFrom = taskTrackerToReputation.get(hb.from)  
4    if repFrom < Maximum Reputation 
5        repFrom = repFrom + 1   //gain reputation 
6    endif 
7    if  finding gossips in this heartbeat 
8        foreach gp in gossips 
9           gossipQueue = gossipQueues.get(gp.to) 
10         Remove the expiry gossips in gossipQueue 
11         penalty = Use (5) to calculate the new penalty 
12         gp.penalty = penalty 
13         repTo= taskTrackerToReputation.get(gp.to)-penalty 
14         taskTrackerToReputation.put(gp.to, repTo) 
15         gossipQueue.add(gp) 
16         if (repTo < Minimum Reputation)  
17   LostTracker(gp.to) 
18      end foreach 
19   endif 
20 end procedure 
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V. EXPERIMENTS 

A. Configuration 
In this sector, we will explain how the experiments were 

carried out to validate the proposed mechanisms. We deploy 
a local cluster which contains 6 Dell InspironTM 580s-468 
nodes connected by gigabit Ethernet. Each node has Intel 
Core i3 550, 4GB memory. The Hadoop cluster is build on 
Hadoop 0.20.2, two nodes of which  service as  JobTracker 
and NameNode respectively. All of the six nodes install 
both TaskTracker and DataNode services.  

We use GridMix2 as our default workload. The main 
purpose of GridMix2 [11] is to model the production loads 
of the real world and provide it to the developers as a 
performance beachmark. It supports to generate the massive 
data for the jobs and to automatically run a mix of synthetic 
workload, which can be specified in a profile file. There are 
three versions of the GridMix tool, from which GridMix2 is 
prefered as the experimental workload, not only because it 
can simulate the real enviroment, but also because it 
configure various jobs with variable size. It is convient for 
us to custeromize the workload to validate our prototype. 

The experiments utilise two representative MapReduce 
applications, i.e., sort and word count, which can be 
configured in the GridMix2 workload. The configuratioins 
of the two programs are given in Table I. For both programs, 
the input data is randomly generated using the tools given 
by the GridMix2. From the Table I, it can be seen that the 
sort program is a small job while the word count is 
relatively large. We choose the jobs with different size 
because the two mechanisms have their own size 
preferences, which will be explained in the Results section. 

TABLE I.  APPLICATION CONFIGURATIONS 

Programs Input Size #Maps #Reduces 

sort 45M 10 15 

word count 545M 60 170 

B. Results 
We use job execution time as the major performance 

metric. As Figure 5 shows, the native Hadoop can finish the 
sort and word count programs within 30 seconds and 2.22 
minutes respectively, if there are no failures. We inject the 
worker failure by simply shutdown the TaskTracker service 
of the worker manually. 

While under one worker failure, it is manifest that the 
performance of the native Hadoop siginificantly decreases 
since the execution time for the both programs dramtically 
rises, which are 13 and 14 minutes respectively. The reason 
for this is that the native Hadoop uses the fixed expiry 
interval 10 minutes for each worker, which results in the 
delayed detection of the failed worker. 

We first evaluate the performance of the adaptive interval. 
After estimating the job execution time, the adaptive expiry 
interval for the sort and word count programs are decided, 

which are 27 seconds and 2.2 minutes respectively. From 
Figure 5, the finish time for both programs is relatively 
longer than the time without any node failures, but is 
significantly shorter than the time when there are failures of 
the native Hadoop. It shows that it has 90% and 80% 
improvement in execution time for sort and word count 
respectively.  

 

 
Figure 5.  Average Execution Time of different detection mechnisam with 

one node failure 

Furthermore, we evaluate the reputation-based detector 
mechanism. In the experiments, the configuration of some 
inportant parameters is as described as below: 

� REPUTATIOIN_INITIAL: Initial reputation value 
for each worker, which is 0 for the cluster. 

� REPUTATIOIN_MAX: The maximum reputation 
value allowed by JobTracker, which are 30 in the 
experiment. 

� REPUTATION_MIN: The minimum reputation 
value allowed by JobTracker, below which 
JobTracker will believe that worker as a lost tracker, 
which is -10. 

� INCREAMENTAL_PENALTY_RATIO: Represent 
the �  in the reputation-based detector algorithm, 
which is 2 by default. 

� PENALTY_INITIAL: Initial penalty value for each 
worker, which is 2 by default. 

All these parameters can be configured in the configure 
file: mapred.xml. According to the Figure 5, the result for 
the program sort is slightly shorter than the native Hadoop, 
but not as good as the result for the program word count, 
which has achieved 82% execution time decreasing than the 
native Hadoop, approximately 2.57 minutes.  

Why does the performance of the reputation-based 
detector differ greatly on different jobs? As is shown in the 
Figure 6 sort (a), when the reputation-based detector was 
used, the execution time for the sort program is not always 
fluctuating between 10 and 13 minutes. There are some 
separated points lower than 3 minutes.  While in Figure 6 
sort (b), the results are relatively stable and stay off the level 
of 1.3 minutes. Therefore, the adaptive interval functions 
stable and better than the reputation-based detector on the 
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Figure 6.  Comparison of the Adaptive Interval and the Reputatioin-based Detector. 

sort program. The reason for the unstable of the reputation-
based detector is that the sort program is a relatively small 
job, which will result in that there are probably no tasks 
running on the ready-to-fail worker, thus decreasing the 
number of the failed-fetch reports. If there are not enough 
failed-fetch reports to support JobTracker to decay the 
reputation for the failed TaskTracker, the Reputation-based 
detector is exactly the same as the native Hadoop. It can be 
seen from Figure 6 sort (a) that the average execution time 
for those points fluctuating around 12 minutes is the same as 
the native Hadoop. 

As the size of the job increases, the performance of the 
reputation-based detector becomes stable, as is shown in 
Figure 6 word count (a). Compared with the Figure 6 word 
count (b), the result shows that the average execution time 
of the reputation-based detector is better than the adaptive 
interval. To finish the word count with one failure, the 
adaptive interval spends at around 3.5 minutes while the 
reputation-based detector spends only at around 2.5 minutes. 
The reason for this is that the expiry time for the adaptive 
interval increases as the size of the job increases, which 
results in the decrease of the performance. The adaptive 
expriy interval has a maximum value, which means if the 
value is larger than the default value, the default 10 minutes 
will be used. In this case, the adaptive interval mechanism is 
no much different with the native Hadoop.  

Finally, we can conclude that the two mechanisms have 
achieved the goal of fast detecting the failure workers, thus 
reducing the execution time significantly. The major 
difference between the two mechanisms is that the adaptive 
interval prefers to the small jobs and the reputation-based 
detector is advantageous to the large jobs. Therefore, they 
can work even better if they can work together. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we present the adaptive interval and the 

reputation-based detector that support Hadoop to detect the 
lost trackers in the shortest time, thus reducing the job 
execution time eventually. In particular, we demonstrate the 
benefit of the two mechanisms to greatly improve the 
response time. We have learned several things from this 
work. First, heartbeat interval is important to the job 
execution time just as the experimental results show. Second, 
the reputation-based detector is not suitable for the small 
jobs because there are probably no or less tasks scheduling 
on the failure node, which results in fewer fetch-errors to 
report to JobTracker.  

Due to the limitations of the reputation-based detector, 
the reputation-based are not suitable for the small jobs. 
Therefore, utilizing more kinds of exceptions besides the 
fetch-errors exceptions is a future improvement.  
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