
Adaptive Failure Detection via Heartbeat under Hadoop

Hao Zhu
School of Software

Shanghai Jiao Tong University
Shanghai, P.R. China
ainilife@sjtu.edu.cn

Haopeng Chen
School of Software

Shanghai Jiao Tong University
Shanghai, P.R. China
chen-hp@sjtu.edu.cn

Abstract—Hadoop has become one popular framework to
process massive data sets in a large scale cluster. However, it is
observed that the detection of the failed worker is delayed,
which may result in a significant increase in the completion
time of jobs with different workload. To cope with it, we
present two mechanisms: Adaptive interval and Reputation-
based Detector that support Hadoop to detect the failed
worker in the shortest time. The Adaptive interval is trying to
dynamically configure the expiration time which is adaptive to
the job size. The Reputation-based Detector is trying to
evaluate the reputation of each worker. Once the reputation of
a worker is lower than a threshold, then the worker will be
considered as a failed worker. In our experiments, we
demonstrate that both of these strategies have achieved great
improvement in the detection of the failed worker. Specifically,
the Adaptive interval has a relatively better performance with
small jobs, while the Reputation-based Detector is more
suitable for large jobs.

I. INTRODUCTION
Apache Hadoop [1], an open-source implementation of

Google’s MapReduce [2], is a widely-accepted technology
today for massive data processing on large scale clusters.
Hadoop is a composition of MapReduce and the Hadoop
distributed file system (HDFS) [19] which implements many
features of the Google’s DFS [10]. There are four major
components in Hadoop: JobTracker, TaskTracker for
MapReduce, NameNode and DataNode for HDFS.
JobTracker is responsible for scheduling jobs and tasks onto
TaskTracker, and NameNode is in charge of maintaining the
index of all the massive files. The advantage of Hadoop is
that it allows programmers to focus on designing their
application data flows but hide messy details of
parallelization, fault-tolerance, data distribution and load
balancing in a library.

Due to the popularity of Hadoop, many researchers seek
to extend the functionality of MapReduce or optimize its
performance [8] [9] [12] [18] [20]. One of the most
interesting research hotspots is how to enhance the fault
tolerance of Hadoop. As the volume of the data stored in the
cluster grows dramtically, the cluster will experience more
failures. According to Jeff Dean [3] [4], 1-5% of the disk
drivers will die and servers will crash at least twice (2-4%
failure rate). A typical new cluster will have more than 1000
machine failures in the first year. Therefore, dealing with the
fault tolerance problem is a non-trivial task.

To handle with the failures, both software and hardware
failures, MapReduce use a re-execution strategy which will

take the following actions [2]: if it is on worker failure, then
MapReduce framework will (1) detect failure via periodic
heartbeats, (2) re-execute completed and in-progress map
tasks on that worker, and (3) re-execute in progress reduce
tasks. If it is on master failure, state can be checkpointed into
HDFS so as for a new master to recover and continue from
the last checkpoint. This re-execution mechanism can
achieve good fault tolerance. However, it is observed from
our experiments that the detection of the failed worker in
Hadoop has a certain delay. This delayed detection of the
failure will have several bad consequences:

� Execution time for a small job increases
significantly. A small job, which will finish in half a
minute under no failure, will probably finish beyond
10 minutes if there is a failure occurring at the
runtime. This is because Hadoop set 10 minutes by
default for the expiry time of each TaskTracker.
Therefore, for a small job, the default expiry interval
is too large to find out the lost worker quickly,
consequently increasing the completion time of
small jobs significantly.

� A Healthy node will possibly be added into blacklist
by mistake. In Hadoop the blacklist mechanism is
used to mark unhealthy nodes in the cluster which
has more than four tasks failed on the node. The
node in the blacklist will never be assigned with any
tasks on it for a period of time. If failure happens in
the reduce phase of a job, some tasks on the healthy
node may fail because they cannot correctly fetch the
map data from the failed worker. As a result, these
healthy nodes will be possibly added into the
blacklist by mistake, which will further increase the
execution time.

� Too many unnecessary backup tasks scheduled. This
is because Hadoop will consider those tasks on the
failed worker as slow tasks, so that they assign
backup tasks to re-execute them.

This paper focuses on how to fast detect the failed
worker in a Hadoop cluster. It should be noted that by failure,
it refers to the worker failure. In this paper, we propose two
mechanisms to achieve the goal of fast failure detection in
Hadoop via heartbeat. Firstly, we introduce the Adaptive
interval which will dynamically configure the expiry time
adapted to the various sizes of jobs. As the experiments show,
the Adaptive interval is advantageous to the small jobs. To
handle with large jobs, the Reputation-based Detector was
developed. In the Reputation-Based Detector, JobTracker is

2011 IEEE Asia -Pacific Services Computing Conference

978-0-7695-4624-7/11 $26.00 © 2011 IEEE

DOI 10.1109/APSCC.2011.46

231

in charge of evaluating the reputation of each worker
according the reports of the failed fetch-errors from each
worker. Once the reputation of one worker is lower than a
bound, the master will mark this worker as a failed tracker.
As the experiments show, these two mechanisms can achieve
a better performance in reducing the time to detect the
worker failure than the original Hadoop, thus reducing the
job completion time.

The roadmap for the rest of the paper is as follows. In
Section II, we discuss some related work about the fault
tolerance optimizations. In Section III to Section V, we will
show the architecture design and explain how the Adaptive
interval and Reputation-based Detector work respectively.
We further demonstrate how the experiments are carried out
and compare the performance of the two proposed methods
with the original Hadoop in Section V.

II. RELATED WORK
Recently there are lots of efforts trying to enhance the

fault tolerance of Hadoop. Speculative execution is an
effective way to guarantee the fault tolerance and response
time. Speculative execution is to re-execute slow tasks which
have relatively low progress scores. According to Zaharia et
al [5], the speculative execution can achieve good
performance in a homogeneous environment but not in a
heterogeneous environment. It is because the original job
progress score estimating algorithm cannot find the real slow
tasks in a heterogeneous environment. Therefore, they
proposed a new algorithm called Longest Approximate Time
to End (LATE), aiming to find the real slow tasks. LATE
first estimates the remaining time for each tasks, then assigns
the speculative tasks for those tasks with the longest
remaining time to end.

Another attempt is trying to improve the availability of
Hadoop cluster by avoiding single point of failure (SPOF).
Hadoop Distributed File System (HDFS) and Hadoop
MapReduce both adopt master-slave architecture, so that
SPOF can occur in the NameNode in HDFS and JobTracker
in MapReduce. Either of their failure will make the entire
cluster un-available. Feng Wang et al. proposed a metadata
replication-based solution which involves three major phases
[6]: in initialization phase, each standby/slave node is
registered to active/primary node and its initial metadata
(such as version file and file system image) are caught up
with those of active/primary node; in replication phase, the
runtime metadata (such as edit logs and lease states) for
failover in future are replicated; in failover phase,
standby/new elected primary node takes over all
communications.

Other studies are trying to protect the intermediate data
since intermediate key-value pairs are the most important
data transferred between the nodes. Steven Y. Ko et al.
develop the Intermediate Storage System (ISS) [7] to keep
the intermediate data safe. ISS use an asynchronous rack-
level selective replication mechanism, which minimizes the
effect of run-time server failures on the availability of
intermediate data. Another effort to keep intermediate data
safe is from Bicer [15], et al. In their solution, the reduction
object after processing of a certain number of elements on

each node is copied to another location periodically.
Therefore, if one worker fails, its reduction values exist on
another node. Their system design can be viewed as a
checkpoint-based approach.

Regarding the study of the worker expiry time in Hadoop,
MOON [17] introduces a new state for each worker called
hibernate state and a new parameter into Hadoop called
NodeHibernateInterval which will work together with
NodeExpiryInterval. The worker enters into the hibernate
state if no heartbeats are received for more than the
NodeHibernateInterval. NodeHibernateInterval is much
shorter than the NodeExpiryInterval. If a worker is in
hibernate state, it will not service any request to avoid
unnecessary access attempts from clients. Compared with it,
our study focuses on variable expiry intervals which are
adaptive to the job sizes rather than a fixed or static interval.

Overall, our study differs from the work mentioned
above in the time to handle with failure. All the above
studies except the MOON are attempting to improve
recovery mechanisms which are effective when the failure is
detected and located. However, our work is much like a pro-
active way, trying to detect the lost workers as quickly as
possible. If the cluster is not aware of the failure in shortest
short time, the above work cannot get the expected
performance. To best of our knowledge, it is the first attempt
to guarantee the fault tolerance of Hadoop by adaptively
detecting the failed workers.

III. ARCHITECTURE DESIGN
Original failure detection in Hadoop is based on the

expiry thread which monitors the heartbeats from
TaskTracker and periodically checks whether the time
between the current and last heartbeat expires. As is shown
in Figure 1, TaskTracker will send its heartbeat every 3
seconds by default and the module called Heartbeat
Processor will process these heartbeats and reply a new
heartbeat back to TaskTracker. Then the expiry thread will
utilize these heartbeats received on JobTracker to
periodically check the workers whether they are dead or
alive. If the expiry thread does not receive the heartbeats
from one worker within a period of time, which is 10
minutes by default, then the worker will be considered as
dead.

To cope with the delayed failure detection, we develop
two modules for JobTracker which are marked with shadow
in the Figure 1. One is Adaptive Interval, which will
configure the heartbeat interval and node expiry interval time
based on that estimating time. It needs Job Estimator to
estimate the job execution time for Adaptive Interval.
Another mechanism is called Reputation-based Detector,
which is responsible for collecting the heartbeats from each
TaskTracker and extracting fetch-error information from
these heartbeats. The Reputation-based Detector will use
these fetch-errors to evaluate the reputation for each
TaskTracker. Basically, these two mechanisms proposed in
this paper are based on the heartbeat because they depend on
the heartbeat to either check expiry or deliver messages.
Specifically, as the figure 1 shows, the new processing flow
is as following:

232

Figure 1. Architecture Design of the Adaptive Failure Detction

(1) JobClient first receives a request from users, and then
submits this request to JobTracker.

(2) JobInit prepares the necessary data for the job,
including the data locations, executing jars and etc.

(3) After initializing the job, general information about the
job flows into the Job Estimator, which will analyze this
information to estimate the execution time of the job.

(4) Then, the Adaptive interval will use the estimated time
to calculate the new adaptive expiry time for each job and
configure it into expiry thread and the heartbeat interval at
the runtime. The detection method for the Adaptive interval
is exactly same as the original Hadoop but differs in its
expiry time interval.

(5) At the same time, the Reputation-based Detector is
collecting the fetch-errors extracted from the heartbeat and
evaluating the reputation for each TaskTracker. If the
reputation of one TaskTracker is lower than the lowest
bound, JobTracker will mark that TaskTracker as a failed
TaskTracker.

In Sections IV and V, the details about how these two
mechanisms work will be explained in details.

IV. ADAPTIVE INTERVAL
The design goal of the adaptive interval is to enable

Hadoop to dynamically configure its expiry interval which is
adaptive to the job size, thus detecting the failed worker in
the shortest time. To achieve that goal, the relationship
between the heartbeat interval and the job execution time
will be discuss firstly. And then a job estimating model will
be built to estimate the execution time. Finally, we will
introduce the Adaptive Interval which will use the estimating
model to calculate the expiry interval and achieve the design
goal.

A. Adaptive Heartbeat Interval
The adaptive heartbeat interval means that the heartbeat

interval is adaptive to the job size. Why do Hadoop need
adaptive heartbeat interval? First, having a longer heartbeat
interval means there is a time delay in the time when
TaskTracker reports its available slots to JobTracker. In
contrast, a low heartbeat interval value means that
TaskTracker can report its status about its available slots and
failure information to JobTracker without any delay, but the
relatively frequent interval will result in the overloading of
the master [16]. It is confirmed in the experiments as showed
in Figure 2. Overall, the job execution time with the default 3

seconds interval has the largest execution time. As the
interval time decreases, the execution time has decreased. In
contrast, to finish a job, the average number of heartbeats
received by JobTracker increases significantly as the
heartbeat interval becomes shorter. Therefore, it is important
to give a right value to the heartbeat interval to balance the
overload of JobTracker and the execution time.

Figure 2. Job Execution Time and Heartbeat Num over various Heartbeat

Intervals for the sort program

We observe that the reduce tasks spend more time than
the map tasks. Therefore, it is unnecessary to use a uniform
interval for both map and reduce tasks. We develop a two-
phase interval: map-phase interval and reduce-phase interval,
to adaptively set the heartbeat interval. When the job runs in
the map phase, JobTracker and TaskTracker adopts the map-
phase interval. When the job runs in the reduce phase, the
reduce-phase interval is adopted, which is relatively longer
than the map-phase interval. In the Figure 2, the last point in
both line graphs shows the results of the two-phase interval.
In this specific experiment, the map phase interval is 1
second and the reduce phase interval is 3 seconds. The
execution time for the job is 12.5 percent less than the
default 3 seconds. Compared with other heartbeat intervals
except the default 3s, the two-phase heartbeat interval has
much smaller heartbeat number which is manifest to ease the
burden of the master. It should be noted that the two intervals
are adaptive to the map and reduce task execution time
respectively. The execution time for both map and reduce
task is estimated in the following sector Job Estimator.

B. Job Estimator
There are already several efforts to estimate Hadoop job

execution time [13] [14], which are quite similar with ours.

0

10

20

30

40

50

3 1 0.5 0.2 1&3

E
xe

cu
tio

n
T

im
e

0

100

200

300

400

500

3 1 0.5 0.2 1&3
Seconds

H
ea

rt
be

at
 N

um
.

heartbeat

TaskTracker Heartbeat
Processor

Reputation-based
Detector

JobInit

Adaptive Interval

JobClient
Job Estimator

JobTracker

tasks

233

The estimating model is based on the following assumptions:
(1) the cluster consists of homogeneous nodes, so that the
time of processing a unit of data is equal; (2) distribution of
the input data is uniform, so that the both map tasks and
reduce tasks have the same amount of data to process.
Several notations are specified as described as below:

� α: Total input data for map tasks.
� �� and ��: Time to process unit map and reduce data

respectively.
� �� and ��: Average number of running slots for map

and reduce tasks respectively.
� ��: Time to transfer unit data in the shuffle phase.
� ρ: The ratio of the amount of map input data and

map output data, which depends on the characteristic
of the different jobs. Different workload with
different application logic may have different ρ.

� β: Total map output data where β = ρ ∗ α.
Hadoop jobs have three major phases: map, shuffle and

reduce. In map phase, each task keeps all the intermediate
results into the local file system. Before reduce phase, reduce
tasks have to prepare the input data, which is often called
shuffle phase. In shuffle phase, reduce tasks need to fetch
data from the remote workers. We assume that the amount of
the data to shuffle is the same amount as the map output data.
But in practice, the data to shuffle is relatively smaller than
the amount of the map output data. After shuffling, reduce
tasks can perform reduce task and keep all of its results into
HDFS. Therefore, the estimating execution time (EET)
should consist of three components: time to process map data,
time to shuffle the data and time to process data in the reduce
phase, which is demonstrated in (1).

� ��� = α ∗ �
��

+ � ∗ �� + � ∗ �
��

� ����

C. Adaptive Expiry Interval
The expiry interval is closely related to the heartbeat

interval. To obtain the same level of the fault tolerance for
the various jobs, the expiry interval should be adaptive to the
job size.

Hadoop has a TaskTracker-level tuning parameter:
mapred.tasktracker.expiry.interval, the default value of
which in Hadoop is 10 minutes, which is fixed and
disadvantageous to small jobs. Our proposal use (1) to
estimate the execution time for each job at the runtime and
configure that parameter with the new expiry interval time.
For large jobs whose execution time is beyond an upper
bound value, the upper bound value will be used instead to
forbid those large jobs to use its execution time as expiry
interval. This upper bound value can be set based on the
cluster size and workload characteristic. In the experiments,
this upper bound value is 10 minutes. To conclude, the final
expiry interval algorithm is defined in (2), where TET
denotes the TaskTrackerExpiryTime.

TET = ���� �� EET < 10
10 �� EET ≥ 10 ���

After choosing the expiry interval time, the expiry thread
in Heartbeat Processor will use this value to monitor the
entire cluster. If JobTracker has not received a heartbeat
from one worker within that interval, JobTracker will
consider that worker as a failed worker.

V. REPUTATION-BASED DETECTOR
The Reputation-Based Detector aims to evaluate the

reputation of each worker based on the fetch-errors
information monitored by JobTracker, thus reducing the time
to detect the failed worker.

To evaluate the reputation, we first need to explain how
TaskTracker can lose its reputation. It is observed that the
fetch-errors is one of the most common exceptions caught by
TaskTracker when its reduce task cannot finish its copy from
the remote worker, primary because the remote worker has
failed and its intermediate data have lost. In the proposed
solution, the worker who has caught these fetch-errors will
report them to JobTracker via heartbeat because it suspects
that the remote worker is probably failed. By referring to the
suspected information, we call them gossips later on because
some of the suspect information is true while others may be
not. After receiving these gossips across the workers,
JobTracker will subtract corresponding penalty for the
reputation to the suspicious worker. When the reputation is
lower than a threshold, the suspicious worker will be marked
as a failed worker. Before explaining how the reputation-
based detector functions, we specify several important
objects used in this mechanism as described as below:

� gossip< A���� , B� , Time, Penalty>: Each Time
JobTracker receives heartbeat from TaskTracker, it
will extract the gossips from heartbeat. Each gossip
means the worker ����� meets a fetch-error from
the worker B�, thus suspecting that the worker B�
has a failure at the Time. The field Penalty means
how much reputation should be subtracted from the
current reputation of the worker B� , which is
calculated based on the past gossips.

� gossipQueues<TrackerId,Queue<Gossip>>:
JobTracker maintains a gossip queue for each
worker. It is where all the gossips are kept on
JobTracker. Each time JobTracker receives a gossip
in the heartbeat, it will put the gossip into the
corresponding queue. Each gossip queue has an
expiry time. If the time, between the newly gossip
and the latest gossip in the same queue, is longer
than the expiry time, all the expired gossips will be
removed from the queue.

� taskTrackerToReputation<TrackerId, Value>: It is a
map which contains all the reputation value to each
TaskTracker. If the tracker id is not found in this
map, a new object will be created into it with an
initial reputation. If the reputation of one tracker is
lower than a threshold value, the corresponding
tracker object will be deleted from the map.

It is interesting to note that the sematic information
contained in these gossips is extremely different. We explore
the temporal and spatial characteristics among these gossips.

234

1) Temporal: The gossips tend to be gathered within a
short period of time. The more gossips received within that
time, the more penalties will be given to that TaskTracker.
For example, three gossips collected at t�, t� and t� in Figure
3 (a) are much more believable than the situation where there
is only one gossip reporting during the same period. If the
worker A���� suspects another misbehavior of the worker
B�, it needs to re-caculate the reputation value with what
have already been stored in its gossip queue regarding the
worker B�. For each gossip received, a penalty value will be
given to the current reputation of the suspicious worker. The
more gossips received, the higher penalty value will be
given.

(a)

(b)

Figure 3. Example of the gossip queue for the worker B

We introduce a tuning parameter called incremental
penalty ratio to give a penalty to each gossip. Therefore, the
function is defined in (3) to calculate the gossip penalty in
the Figure 2 where incremental penalty ratio is denoted as �.
!(�, ") and !#�(�, ") denote the penalty calculated for the
current gossip and previous gossip from A to B, respectively.

 !(�, ") = � ∗ !#�(�, ") ����

2) Spatial: The more different workers involved to
report, the more JobTracker is convinced that the particular
TaskTracker has a failure. For example, even though the
queues in the Figure 3 (a) and (b) have exactly the same
temporal characteristic, the queue in the figure 2 will be
more believable. It is because that the Figure 3 (b) has more
workers involved to report the worker B. Therefore, higher
penalty weight will be assigned to the gossips from the
worker C.

Let Φ(B) = {α�, α�, α� ⋯ ⋯ α�} be the set of the different
workers reporting the suspicion of B. If there is a gossip
from a new worker, the following function will be used to
calculate the new penalty value,

!(α&, ") = ' ∗ !�(α&, ") �� α& ∉ Φ(B) �	�

where ' and !�(α&, ") represent the size of Φ(B) and the
initial penalty repectively. After calculating the penalty, this
worker will be added into the set Φ(B). This set will be
updated periodically because some gossips will be out of

date in the queue, and some workers will be removed out of
the set. Combined with (3), we define the final function:

!(α&, ") = �� ∗ !#�(α&, ") �� α& ∈ Φ(B)
' ∗ !�(α&, ") �� α& ∉ Φ(B) �
�

When the reputation of one worker is lower than a
threshold, JobTracker will believe that worker failed and is
lost. This threshold value can be set based on the size of the
cluster and the historical data.

However, how can a worker gain its reputation? A
worker can gain its reputation via heartbeat as well. Each
time when JobTracker receives a heartbeat, the worker
sending this heartbeat will gain an increase on its reputation.
Even if it is possible to report gossips by mistake, the
worker still can gain its reputation by sending its heartbeats
to JobTracker. The reputation-based detector has a upper-
bound for the maximum repuation, which means that if the
reputation of one TaskTracker is equal to the upper-bound,
it cannot gain reputation any more. Figure 4 shows our
pseudo code of the reputation-based detector implemented in
the prototype system.

Figure 4. Pseudo code of the Reputation-based Detector

�1 �2 �3

C BA B A B

�1 �2 �3

A BA B A B

Algorithm Reputation-based Detector algorithm

1 procedure RBD
2 input: hb
 output: failure signal

variable definition:
1. hb: Represent the received heartbeat
2. repFrom: Represent the reputation of the worker

who has transmitted the heartbeat;
3. repTo: Represent the reputation of the

suspicious worker.
4. gp: short for the gossip.

3 repFrom = taskTrackerToReputation.get(hb.from)
4 if repFrom < Maximum Reputation
5 repFrom = repFrom + 1 //gain reputation
6 endif
7 if finding gossips in this heartbeat
8 foreach gp in gossips
9 gossipQueue = gossipQueues.get(gp.to)
10 Remove the expiry gossips in gossipQueue
11 penalty = Use (5) to calculate the new penalty
12 gp.penalty = penalty
13 repTo= taskTrackerToReputation.get(gp.to)-penalty
14 taskTrackerToReputation.put(gp.to, repTo)
15 gossipQueue.add(gp)
16 if (repTo < Minimum Reputation)
17 LostTracker(gp.to)
18 end foreach
19 endif
20 end procedure

235

V. EXPERIMENTS

A. Configuration
In this sector, we will explain how the experiments were

carried out to validate the proposed mechanisms. We deploy
a local cluster which contains 6 Dell InspironTM 580s-468
nodes connected by gigabit Ethernet. Each node has Intel
Core i3 550, 4GB memory. The Hadoop cluster is build on
Hadoop 0.20.2, two nodes of which service as JobTracker
and NameNode respectively. All of the six nodes install
both TaskTracker and DataNode services.

We use GridMix2 as our default workload. The main
purpose of GridMix2 [11] is to model the production loads
of the real world and provide it to the developers as a
performance beachmark. It supports to generate the massive
data for the jobs and to automatically run a mix of synthetic
workload, which can be specified in a profile file. There are
three versions of the GridMix tool, from which GridMix2 is
prefered as the experimental workload, not only because it
can simulate the real enviroment, but also because it
configure various jobs with variable size. It is convient for
us to custeromize the workload to validate our prototype.

The experiments utilise two representative MapReduce
applications, i.e., sort and word count, which can be
configured in the GridMix2 workload. The configuratioins
of the two programs are given in Table I. For both programs,
the input data is randomly generated using the tools given
by the GridMix2. From the Table I, it can be seen that the
sort program is a small job while the word count is
relatively large. We choose the jobs with different size
because the two mechanisms have their own size
preferences, which will be explained in the Results section.

TABLE I. APPLICATION CONFIGURATIONS

Programs Input Size #Maps #Reduces

sort 45M 10 15

word count 545M 60 170

B. Results
We use job execution time as the major performance

metric. As Figure 5 shows, the native Hadoop can finish the
sort and word count programs within 30 seconds and 2.22
minutes respectively, if there are no failures. We inject the
worker failure by simply shutdown the TaskTracker service
of the worker manually.

While under one worker failure, it is manifest that the
performance of the native Hadoop siginificantly decreases
since the execution time for the both programs dramtically
rises, which are 13 and 14 minutes respectively. The reason
for this is that the native Hadoop uses the fixed expiry
interval 10 minutes for each worker, which results in the
delayed detection of the failed worker.

We first evaluate the performance of the adaptive interval.
After estimating the job execution time, the adaptive expiry
interval for the sort and word count programs are decided,

which are 27 seconds and 2.2 minutes respectively. From
Figure 5, the finish time for both programs is relatively
longer than the time without any node failures, but is
significantly shorter than the time when there are failures of
the native Hadoop. It shows that it has 90% and 80%
improvement in execution time for sort and word count
respectively.

Figure 5. Average Execution Time of different detection mechnisam with

one node failure

Furthermore, we evaluate the reputation-based detector
mechanism. In the experiments, the configuration of some
inportant parameters is as described as below:

� REPUTATIOIN_INITIAL: Initial reputation value
for each worker, which is 0 for the cluster.

� REPUTATIOIN_MAX: The maximum reputation
value allowed by JobTracker, which are 30 in the
experiment.

� REPUTATION_MIN: The minimum reputation
value allowed by JobTracker, below which
JobTracker will believe that worker as a lost tracker,
which is -10.

� INCREAMENTAL_PENALTY_RATIO: Represent
the � in the reputation-based detector algorithm,
which is 2 by default.

� PENALTY_INITIAL: Initial penalty value for each
worker, which is 2 by default.

All these parameters can be configured in the configure
file: mapred.xml. According to the Figure 5, the result for
the program sort is slightly shorter than the native Hadoop,
but not as good as the result for the program word count,
which has achieved 82% execution time decreasing than the
native Hadoop, approximately 2.57 minutes.

Why does the performance of the reputation-based
detector differ greatly on different jobs? As is shown in the
Figure 6 sort (a), when the reputation-based detector was
used, the execution time for the sort program is not always
fluctuating between 10 and 13 minutes. There are some
separated points lower than 3 minutes. While in Figure 6
sort (b), the results are relatively stable and stay off the level
of 1.3 minutes. Therefore, the adaptive interval functions
stable and better than the reputation-based detector on the

0
2
4
6
8

10
12
14
16

sort word count

Native Hadoop without failure
Native Hadoop
Adaptive Expiry Interval
Gossip-Style Reputation

E
xe

cu
tio

n
T

im
e

236

 sort (a) word count (a)

 sort (b) word count (b)

Figure 6. Comparison of the Adaptive Interval and the Reputatioin-based Detector.

sort program. The reason for the unstable of the reputation-
based detector is that the sort program is a relatively small
job, which will result in that there are probably no tasks
running on the ready-to-fail worker, thus decreasing the
number of the failed-fetch reports. If there are not enough
failed-fetch reports to support JobTracker to decay the
reputation for the failed TaskTracker, the Reputation-based
detector is exactly the same as the native Hadoop. It can be
seen from Figure 6 sort (a) that the average execution time
for those points fluctuating around 12 minutes is the same as
the native Hadoop.

As the size of the job increases, the performance of the
reputation-based detector becomes stable, as is shown in
Figure 6 word count (a). Compared with the Figure 6 word
count (b), the result shows that the average execution time
of the reputation-based detector is better than the adaptive
interval. To finish the word count with one failure, the
adaptive interval spends at around 3.5 minutes while the
reputation-based detector spends only at around 2.5 minutes.
The reason for this is that the expiry time for the adaptive
interval increases as the size of the job increases, which
results in the decrease of the performance. The adaptive
expriy interval has a maximum value, which means if the
value is larger than the default value, the default 10 minutes
will be used. In this case, the adaptive interval mechanism is
no much different with the native Hadoop.

Finally, we can conclude that the two mechanisms have
achieved the goal of fast detecting the failure workers, thus
reducing the execution time significantly. The major
difference between the two mechanisms is that the adaptive
interval prefers to the small jobs and the reputation-based
detector is advantageous to the large jobs. Therefore, they
can work even better if they can work together.

VI. CONCLUSION AND FUTURE WORK
In this paper, we present the adaptive interval and the

reputation-based detector that support Hadoop to detect the
lost trackers in the shortest time, thus reducing the job
execution time eventually. In particular, we demonstrate the
benefit of the two mechanisms to greatly improve the
response time. We have learned several things from this
work. First, heartbeat interval is important to the job
execution time just as the experimental results show. Second,
the reputation-based detector is not suitable for the small
jobs because there are probably no or less tasks scheduling
on the failure node, which results in fewer fetch-errors to
report to JobTracker.

Due to the limitations of the reputation-based detector,
the reputation-based are not suitable for the small jobs.
Therefore, utilizing more kinds of exceptions besides the
fetch-errors exceptions is a future improvement.

237

REFERENCES
[1] Hadoop. http://hadoop.apache.org/core/
[2] J. Dean and S. Ghemawat, "MapReduce: simplified data processing

on large clusters", presented at Commun. ACM, 2008, pp.107-113.
[3] J. Dean and S. Ghemawat, "MapReduce: a flexible data processing

tool", presented at Commun. ACM, 2010, pp.72-77.
[4] J. Dean, “Design Lessons and Advice from Building Large Scale

Distributed Systems”, keynote talk at LADIS 2009.
[5] M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and I. Stoica,

"Improving MapReduce Performance in Heterogeneous
Environments", in Proc. OSDI, 2008, pp.29-42.

[6] F. Wang, J. Qiu, J. Yang, B. Dong, X.H. Li, and Y. Li, "Hadoop
high availability through metadata replication", in Proc. CloudDB,
2009, pp.37-44.

[7] S.Y. Ko, I. Hoque, B. Cho, and I. Gupta, "Making cloud
intermediate data fault-tolerant", in Proc. SoCC, 2010, pp.181-192.

[8] M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, "Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling", in Proc. EuroSys, 2010,
pp.265-278.

[9] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. xChakka, S. Anthony, H.
Liu, P. Wyckoff, and R. Murthy, "Hive - A Warehousing Solution
Over a Map-Reduce Framework", presented at PVLDB, 2009,
pp.1626-1629.

[10] S. Ghemawat, H. Gobioff, and S. Leung, "The Google file
system", in Proc. SOSP, 2003, pp.29-43.

[11] GridMix.
http://hadoop.apache.org/mapreduce/docs/r0.21.0/gridmix.pdf

[12] C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R. Henry, R.
Bradshaw, and N. Weizenbaum, "FlumeJava: easy, efficient data-
parallel pipelines", in Proc. PLDI, 2010, pp.363-375.

[13] C. Tian, H. Zhou, Y. He, and L. Zha, "A Dynamic MapReduce
Scheduler for Heterogeneous Workloads", in Proc. GCC, 2009,
pp.218-224.

[14] Kc K., Anyanwu K., "Scheduling Hadoop Jobs to Meet
Deadlines", Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on , vol., no., pp.388-
392, Nov. 30 2010-Dec. 3 2010 doi: 10.1109/CloudCom.2010.97.

[15] T. Bicer, Wei Jiang, G. Agrawal, "Supporting fault tolerance in a
data-intensive computing middleware", Parallel & Distributed
Processing (IPDPS), 2010 IEEE International Symposium on , vol.,
no., pp.1-12, 19-23 April 2010 doi: 10.1109/IPDPS.2010.5470462.

[16] Linh T.X. Phan, Zhuoyao Zhang, Boon Thau Loo, Insup Lee, "Real-
time MapReduce Scheduling", Technical Report No. MS-CIS-10-32,
University of Pennsylvania, 2010.

[17] H. Lin, X. Ma, J.S. Archuleta, W. Feng, M.K. Gardner, and Z.
Zhang, "MOON: MapReduce On Opportunistic eNvironments", in
Proc. HPDC, 2010, pp.95-106.

[18] A. Abouzeid, K. Bajda-Pawlikowski, D.J. Abadi, A. Rasin, and A.
Silberschatz, "HadoopDB: An Architectural Hybrid of MapReduce
and DBMS Technologies for Analytical Workloads", presented at
PVLDB, 2009, pp.922-933.

[19] HDFS.
http://hadoop.apache.org/common/docs/r0.20.0/hdfs_design.pdf

[20] I. Michael, P. Vijayan, C. Jon, W. Udi, T. Kunal, G. Andrew,
"Quincy: Fair scheduling for distributed computing clusters", in
Proc. SOSP, 2009, p 261-276.

238

