
A Tabu Search Approach for Dynamic Service
Substitution in SOA Applications

Can Zhang
School of Software

Shanghai Jiao Tong University

Shanghai, China

Email: zhangcan@sjtu.edu.cn

Haopeng Chen
School of Software

Shanghai Jiao Tong University

Shanghai, China

Email: chen-hp@sjtu.edu.cn

Jinbo Du
School of Software

Shanghai Jiao Tong University

Shanghai, China

Email: dujinbo@gmail.com

Abstract—Due to the possibility of internal changes of services
or changes in their environment, dynamic service substitution has
become a key problem in Service Oriented Architecture (SOA). In
recent years, researchers have worked out several algorithms for
dynamic service substitution. However, the performance of these
algorithms is generally not that satisfactory. In this paper, we
propose a heuristic service substitution algorithm based on Tabu
Search. The algorithm models the service substitution problem as
searching valid solutions in the Candidate Service Graph (CSG).
In the end, the effectiveness and performance of the algorithm
are studied by simulations. The simulation results show that the
algorithm performs very well in dynamic adaption, especially
when the scale of the service substitution problem surges.

Keywords—tabu search; service substitution; SOA;

I. INTRODUCTION

In Service-Oriented Architecture (SOA), several services

from different service providers are composed together to

fulfill complex business needs. All the component services

in a SOA application work as a whole to service client

requests. However, during the execution of a SOA application,

if service failure is detected, a service substitution mechanism

is needed to ensure that the failed service should be replaced

effectively and efficiently. In fact, the problem of service

substitution covers several aspects, including how to monitor

the runtime status of the SOA applications, how to identify

those services which have same functions but different non-

functional properties, how to find the replacement solution

efficiently, and how to reconfigure the service workflow with-

out interrupting the running processes. Our previous work

has presented feasible solutions to some of these problems.

In [1], we use feedback mechanism to capture the runtime

QoS attributes of each component service, and provide three

methods to collect the real-time QoS data [2]. With these

dynamic data, a novel and extensible ontology-based approach

[3] can be applied to describe the QoS constraints and calculate

the QoS attributes of the composite service. Also, a P2P

service registry called QMC is designed and implemented

for storing QoS feedbacks, managing QoS data, and handling

QoS-based service discovery requests [4]. What’s more, in [5],

Fredj et al. proposed the SIROCO middleware platform, which

enables the runtime, semantic-based service substitution.

In this paper, we mainly focus on the algorithmic aspect of

the service substitution problem. One of the most challenging

issues in service substitution is to manage the time com-

plexity of the algorithm. Because of their similarity, service

substitution is closely related to the service selection problem.

Moreover, the service selection problem can be mapped to a

multidimension multichoice 0-1 knapsack problem (MMKP)

[6], which has been shown to be NP-complete [7]. On the

other hand, heuristic algorithms are used to speed up the

process of finding a satisfactory solution, where an exhaustive

search is impractical. Consequently, heuristic algorithms can

be introduced to solve the service substitution problem, and

Tabu Search is one of the well-known local search algorithms

[8]. What’s more, the way how Tabu Search works makes it

a suitable algorithm for service substitution. For a composite

service which may be composed of a large number of services,

upon failure time, generally only a small number of services

shall be replaced. At the same time, a typical Tabu Search

algorithm starts from a randomly-generated initial solution

and iteratively searches in its neighborhood until it finds a

locally-optimal solution. As a result, if we simply use the old

composite service as the initial solution, it is possible that after

a few iterations, the algorithm will reach a valid solution. Even

in the worst-case scenarios, the algorithm may travel through

the whole solution space, which is as good as, if not better

than the brute force method.

The rest of the paper is organized as follows. Section 2

surveys some related work. Section 3 introduces a motivating

example to explain the problem discussed in this paper. Section

4 presents the problem model defined for the service substi-

tution algorithm and the notations used in the paper. Section

5 shows the Tabu Search-based algorithm for dynamic service

substitution. The simulation results of performance study are

shown in Section 6. Finally, the paper is concluded in Section

7.

II. RELATED WORK

Many researchers have worked on the dynamic service

substitution problem. A native approach to handle the problem

is to re-compose from scratch every time a change occurs. In

[9], Liangzhao Zeng et al. models the service composition

as a linear programming problem, and provides an efficient

algorithm to dynamically construct the composite service

according to qualitative criteria like price, duration, reliability

2011 IEEE Asia -Pacific Services Computing Conference

978-0-7695-4624-7/11 $26.00 © 2011 IEEE

DOI 10.1109/APSCC.2011.50

284

etc. However, this may not be a feasible solution for its high

time complexity.

In [10], Tao Yu et al. divide the service substitution problem

into two situations. First, for the business processes that have

executed half way, they will be switched to a backup path that

bypasses the failed service node. Second, for new business

process instances, they will be re-configured to use a new

globally optimal path without using failed service node. All

the locally- and globally- optimal paths are stored by a broker,

so the system can efficiently switch to a backup process

when failure happens. However, the approach presented in

[10] can only handle a single point of failure. Also, we cannot

ensure the availability of the backing up processes when failure

happens.

Part of our problem modeling is motivated by the business

process model presented in [10], which builds a directed

acyclic graph (DAG) based on the abstract model using all

Web service candidates. The main difference is that in [10],

every edge has delay, cost, and benefit weights, while every

node is associated with a non-functional vector in our model.

Saboohi et al. provide a subgraph replacement approach

[11] to recover from a composite service failure. Upon failure,

a service broker is invoked, trying to re-execute the failed

constituent web services. If re-execution attempts fail, a failure

recovery strategy by replacing a sequence of semantic web

services is applied. By searching for replacement alternatives

of all the subgraphs which are compatible to the original

one, the best ranked alternative subgraph will be the replace-

ment selection. The limitation is that the time complexity of

calculation of all subgraphs is too high, for the number of

all subgraphs is (n(n + 1))/2, where n is the number of

component services.

In [12], Moser et al. present a non-intrusive monitoring

and service adaption system called VieDAME. It can monitor

BPEL processes, discover QoS failure, and replace failed

partner services based on some replacement strategies. In

[12], Moser et al. highlights VieDAME’s ability in monitoring

BPEL processes and its role as SOAP message mediator when

interface mismatches occur in replacement. However, they pay

little attention to the complexity of the replacement algorithms,

which may become the performance bottlenecks of the whole

system.

In summary, to dynamically replace the failed composite

service, we have to provide an efficient and effective algorithm

so that the availability of the candidate services is ensured and

also the service process is not interrupted.

III. A MOTIVATING EXAMPLE

To better illustrate the problem discussed in this paper,

we consider an online travel agency which is composed of

five services: login service, flight booking service, attraction

ticket booking service, hotel booking service, and logout

service (see Fig. 1). Suppose that the online travel agency

will automatically finish the three booking tasks after all the

information needed is input by the clients.

Fig. 1. The Motivating Example of an Online Travel Agency

If all the services respond quickly, then the clients will

finish their requests in no time (the time need to complete the

whole booking service is the sum of the time of flight booking

service, the attraction ticket booking service and the hotel

booking service). However, if one of the services experiences

a large surge of clients, maybe it will respond much slower

than expected or do not respond during to interval failure.

For that matter, a service substitution is needed. For a small

composite service composed of several services (here, the

online travel agency), it may be easy to detect the failed service

and substitute it with a good one. But for a composite service

composed of hundreds of services, it may not be that easy to

detect the failed service. What’s worse, the slow response of

the whole system may not be caused by a single failed service.

Rather, several services in the system become slower than

before. Then, which services in the system should be replaced

to make the composite service satisfy the QoS requirements

again? Especially when the number of candidate services on

the Internet is huge, it takes some time to find a substitution

solution for current composite services.

IV. PROBLEM MODEL

A. Notations

The following notations are used in this paper:

1) s: a single service instance running on an addressable

server on the Internet.

2) S: a set of services which have the same functionality but

different non-functional properties.

3) cs: a composite service. A composite service is a complex

service process composed of a set of services which

can together fulfill complicated functions. In a composite

service, if the output data of service s1 are the input data

of service s2, then we say service s1 is the predecessor

of s2, or s2 is the successor of s1. Also, we shall use the

notation s1 → s2 to represent that s1 is the predecessor of

s2 (or s2 is the successor of s1). In this paper, we only

discuss the sequential composite service, which means

each service s (except the first node and the last one)

in the composite service has a single predecessor and a

single successor (the first node only has a single successor

and the last one only has a single predecessor). For those

parallel, conditional or loop systems, we can use the

reduction function in [3] to reduce them to sequential

systems.

4) q(s): non-functional property of service s.

Defintion 1 For two services s and s′, if q(s) is better

than q(s′), then we say that q(s) > q(s′).
5) V(q(s)): the value of the non-functional property q(s).

For some properties, like the availability, reliability, the

bigger V (q(s)) is, the better the quality q(s) is. We call

285

these properties positive properties, otherwise negative
properties.

6) Q(s): the vector of non-functional properties, denoted by

Q(s) =< q1(s), q2(s), · · · , qn(s) >
For example, if the non-functional properties include the

price, response time, availability and reliability, then

Q(s) =< qprice(s), qrt(s), qre(s) >

We use Definition 2 to compare two quality vectors. For

example, let Q1(s) be the non-functional requirements,

then we say Q2(s) < Q1(s), if there’s any property in

Q2(s) that cannot satisfy the requirement in Q1(s).
Definition 2 For a quality vector

Q(s) =< q1(s), q2(s), , qn(s) >

we say that Q(s1) ≥ Q(s2), if

qm(s1) ≥ qm(s2), ∀m ∈ [1, n]

Similarly, Q(s1) < Q(s2), if

∃m ∈ [1, n], qm(s1) < qm(s2)

B. Problem Description

Formally, we define the service substitution problem as

below:

Definition 3 let csold be the old composite service, and

csnew be the new composite service. Also, the non-functional

requirements vector for the composite service is

Q(csreq) =< qreq1 , qreq2 , qreq3 , · · · , qreqn >

The service substitution problem is:

At the time when Q(csold) < Q(csreq), to find a new

composite service csnew such that Q(csnew) ≥ Q(csreq)
holds.

V. THE TABU SEARCH SOLUTION

A. Candidate Service Graph (CSG)

The solution space of our service substitution algorithm is

the Candidate Service Graph.

Definition 4 A Candidate Service Graph is a DAG that

satisfies three requirements:

1) If service sj is a candidate service for service si, then

sj will inherit all the predecessors and successors from

si. In other words, the predecessors and successors of si
will be the predecessors and successors of sj .

2) If service sp is the predecessor or successor of service

sq, then all the candidates for service sp will be the

predecessors or successors of sq .

3) A virtual source node(vs) and a destination node(vd) are

added to the graph. Also, add an edge from vs to those

who do not have income, and an edge from those who

do not have outcome to vd.

Fig.2 illustrates a simple Candidate Service Graph. In Fig.2,

services s12,s13 are the candidates for service s1, services

s22,s23 candidates for service s2, services s32, s33 candidates

Fig. 2. Candidate Service Graph

for service s3, and service s42 candidate for service s4.Thus

the Candidate Service Graph for the sequential composite

service s1 → s2 → s3 → s4 is shown in Fig.2.

In the following section, we will describe our service

substitution solution organized by the basic components in

Tabu Search algorithm, including objective function, move,

neighborhood, candidate list, etc.

B. Objective Function

Let the quality requirements vector be

Q(csreq) =< q1(cs), q2(cs), q3(cs), , qn(cs) >

we give each non-functional property an evaluation ratio, and

for each non-functional property qj , we use the following

formula to calculate its evaluation ratio uj :

uj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V (qreqj)− V (qj)

V (qreqj)
, where qj is negative (1a)

V (qj)− V (qreqj)

V (qreqj)
, where qj is positive (1b)

where V (qreqj) is the quality requirement for a given non-

functional property, and V (qj) is the actual value of that

property.

The equation below is the evaluation function for a com-

posite service:

Score(cs) =
n∑

j=1

(wj ∗ uj) (2)

where wj ∈ [0, 1], and
n∑

j=1

wj = 1. Here, wj(j = 1 . . . n) is

the weight or impact factor of each property, and its value can

be set by the programmer manually or by the analysis of the

user preference. If the programmer considers the availability

to be an important quality property, then he/she can give a

significantly-larger weight for the coefficient wav before the

evaluation ratio of availability. Also, the values of wj(j =
1 . . . n) can be obtained by analyzing user preference data

through machine learning methods, like genetic algorithms or

neural networks. If the values are not set, the default value of

wj(j = 1 . . . n) is 1/n.

286

Fig. 3. A Move

C. Move

Definition 5 For a composite service, to replace a single

component service with its candidate is a move.

Consequently, the least number of moves needed from one

composite service to another is the distance between the two

composite services.

In Fig.3, services s21,s22 belong to the same service set S1,

and services s31,s32 belong to another service set S2. Thus,

if we replace service s31 with s32 in the composite service

(a), then the composite service (a) is transformed to (b). So,

we say that the distance between (a) and (b) is one move.

Similarly, the distance is also one move between (b) and (c),

and two moves between (a) and (c).

D. Neighborhood

Definition 6 Two composite services are neighbors when

the distance between them is exactly one move.

According to Definition 6, in Fig.3, composite services (a)

and (b), and composite services (b) and (c) are neighbors,

while (a) and (c) are not.

Definition 7 Given a composite service cs, the neighbor-

hood N(cs) is a set of all neighbors of cs.

Therefore, in Fig.3, composite services (a) and (c) are in

N(b).

E. Candidate List

Suppose that the given composite service cs is composed of

hundreds of services, and each service has about one hundred

candidates, then the neighborhood N(cs) may become a

huge set. It is inefficient to search the whole neighborhood.

Therefore, we have to select some good neighbors from its

neighborhood and add them to the candidate list. In our service

substitution algorithm, the candidate list consists of those

neighbors who maximize the value of the objective function.

F. Tabu List and Tabu Tenure

In our algorithm, the Tabu tenure is defined to be a constant.

Also, we design two Tabu lists, namely Tabu-active list and

Tabu-inactive list. Tabu-active list consists of those services

which have just replaced an old service in the composite

service, while Tabu-inactive list is composed of those services

which have just been replaced. The difference between the

two Tabu lists is that services in the Tabu-active list cannot be

dropped during the Tabu tenure, while the ones in the Tabu-

inactive list cannot be selected during the Tabu tenure. How-

ever, there’s one exceptional condition: if the new composite

service satisfies the aspiration criteria defined in section G, the

move can be made even if the involved services stay in either

of the two lists.

G. Aspiration Criteria

In our service substitution algorithm, if and only if the

solution is the best solution (the value of the objective function

is maximum) that has been found so far, the Tabu status of

the service can be ignorable.

H. Long-term Memory

We record the times that each component service has been

added to the Tabu lists (Tabu-active list and Tabu-inactive list).

Once the optimal solution hasn’t been improved for a given

number of iterations, we will restart the search from a new

composite service composed of those least-visited services.

I. Terminating Conditions

When the composite service that satisfies quality require-

ments is found or the maximum number of iterations has been

reached, the algorithm terminates.

J. Service Substitution Algorithm

In this section, pseudo code is used to describe the basic

ideas of our service substitution algorithm.

1) Definitions of the identifiers

• cs: the old composite service

• qos: the non-functional requirements vector

• tabuActiveList: the Tabu-active list

• tabuActiveTenure: the Tabu-active tenure (a constan-

t)

• tabuInactiveList: the Tabu-inactive list

• tabuInactiveTenure: the Tabu-inactive tenure (a con-

stant)

• s: current composite service

• s∗: the optimal solution found so far

• f∗: the maximum value of the objective function found

so far

• numOfIterations: current number of iterations

• MAX: the maximum number of iterations

• MAX NOIMPROV : the maximum number of iter-

ations that the optimal solution can stay unimproved

• < old s, new s >: a move that the old service old s
is replaced with new s

2) Pseudo code

287

Algorithm 1: DoReplacement

input : The old composite service cs
input : The requirements vector qos

1 constructCandidatesGraph(cs) ;

2 tabuActiveList = [] ;

3 tabuActiveTenure = 1 ;

4 tabuInactiveList = [] ;

5 tabuInactiveTenure = 2 ;

6 s = cs ;

7 s∗ = s ;

8 f∗ = f(s∗) ;

9 numberOfIterations = 1 ;

10 while numberOfIterations < MAX do
11 choose a best neighbor

s′ = s+ < old s, new s >
such that old s /∈ tabuActiveList
and (new s /∈ tabuInactiveList or f(s′) > f∗) ;

12 s = s′ ;

13 addServiceToTabuActiveList(new s) ;

14 addServiceToTabuInactiveList(old s) ;

15 update tabu lists ;

16 if f(s) > f∗ then
17 s∗ = s ;

18 f∗ = f ;

19 end
20 if satisfy(qos,s) then
21 Break ;

22 end
23 if noImprovement(f∗,MAX NOIMPROV) then
24 s = constructLeastVisitedSolution() ;

25 end
26 end

VI. SIMULATION EXPERIMENTS

For a composite service composed of m services, and

servicesi(i = 1 . . .m) has bi candidate services, then the size

of the solution space is n =
m∏
i=1

(bi + 1).

To test the efficiency of the Tabu search solution, we have

conducted several experiments, whose solution space ranges

from 102 to 1011. In the following sections, we will present

an experiment which has a small solution space, and the results

of experiments with solution spaces from 102 to 1011.

A. Experiment No.1

In this experiment, we construct a sequential composite

service which is composed of four abstract services, and

each service has two to three candidates. Also, the QoS

properties include the availability, the price, the reliability, and

the response time.

TABLE I
NON-FUNCTIONAL PROPERTIES OF SERVICES

Service Availability Price Reliability Response Time
s1 0.98 300 0.90 15
s11 0.98 400 0.95 10
s12 0.96 200 0.90 30
s13 0.97 300 0.90 20
s2 0.95 500 0.94 60
s21 0.98 600 0.95 50
s22 0.95 500 0.95 40
s23 0.98 400 0.95 45
s3 0.97 500 0.90 30
s31 0.97 400 0.91 25
s32 0.96 350 0.93 35
s33 0.97 400 0.92 30
s4 0.98 800 0.90 20
s41 0.98 700 0.90 30
s42 0.97 750 0.90 10

Fig. 4. CSG for Experiment No.1

The non-functional requirements for the system is

Q(csreq)

=< availability, price, reliability, responsetime >

=< 0.90, 2000, 0.60, 100 >

Table I lists the non-functional properties of all the services,

including component services in the old composite service and

all the candidates. Also, Fig.4 shows the CSG for the service

substitution problem.

After calculation, we can see that the old composite service

cannot satisfy the non-functional requirements, and the service

substitution algorithm is invoked.

B. Experiment No.2

In the second experiment, we randomly generate ten test

cases, where the solution space varies from 102 to 1011. Table

II shows the simulation results: where nactual is the actual

solution space visited in the algorithm, nspace is the whole

solution space, and p = nactual

nspace
.

From the results, we can see that our service substitution

algorithm can find the optimal result by searching a small

portion of the whole solution space, especially when the size

of the solution space gets larger.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an effective heuristic service

substitution algorithm. First, we model the service substitution

288

TABLE II
SIMULATION RESULTS

Experiment nactual nspace p
No.1 20 102 0.2
No.2 36 103 3.6× 10−2

No.3 68 104 6.8× 10−3

No.4 150 105 1.5× 10−3

No.5 2676 106 2.7× 10−3

No.6 3156 107 3.1× 10−4

No.7 6952 108 7.0× 10−5

No.8 18702 109 1.9× 10−5

No.9 24890 1010 2.5× 10−6

No.10 31911 1011 3.2× 10−7

��������	
�������

��������	�
�� ������	��������	�
��	������

� � � � � � � � � ��

������
���	�

���

���

���

���

����

�	
��
��
	

��
��
�
��
��
�
��
�
�

Fig. 5. Simulation Results Diagram

problem as searching valid solutions in the Candidate Service

Graph. Then, we solve it with a heuristic algorithm which

is based on the ideas of Tabu Search. The simulation results

show that our algorithm performs well, especially when the

problem size gets larger.

Nevertheless, more work has to be done for tuning the

parameters in the algorithm, including the Tabu tenures for

the active and inactive Tabu lists, and the size of the candidate

list. Currently, the Tabu tenures are set to be constants, and

the candidate list only contains those solutions that maximum

the value of the objective function. In order to improve the

performance of the algorithm, more experiments are needed

to decide whether the Tabu tenure should be a constant or

the candidate list should also include candidates with other

features.

REFERENCES

[1] H. peng Chen, G. Yang, and C. Zhang, “A closed-loop mechanism for
service evaluating and discovering on the internet,” in INC, IMS and
IDC, 2009. NCM ’09. Fifth International Joint Conference on, aug. 2009,
pp. 1 –8.

[2] C. Zhou and H. Chen, “A mechanism for collecting and feedbacking
the real-time quality of web service,” in Information Science and
Engineering (ICISE), 2009 1st International Conference on, dec. 2009,
pp. 2802 –2807.

[3] M. Li, H. peng Chen, and N. Wang, “The description and calculation
of quality of composite services 1,” in Services Computing Conference,
2009. APSCC 2009. IEEE Asia-Pacific, dec. 2009, pp. 385 –390.

[4] S. Xiong and H. Chen, “Qmc: A service registry extension providing
qos support,” in New Trends in Information and Service Science, 2009.
NISS ’09. International Conference on, 30 2009-july 2 2009, pp. 145
–151.

[5] M. Fredj, N. Georgantas, V. Issarny, and A. Zarras, “Dynamic service
substitution in service-oriented architectures,” in Services - Part I, 2008.
IEEE Congress on, july 2008, pp. 101 –104.

[6] T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for web services
selection with end-to-end qos constraints,” ACM Trans. Web, vol. 1, May
2007. [Online]. Available: http://doi.acm.org/10.1145/1232722.1232728

[7] M. Fischetti, S. Martello, and P. Toth, “The fixed job schedule problem
with spread-time constraints,” Operations Research, vol. 35, pp. 849–
858, 1987.

[8] E. H. L. Aarts and J. K. Lenstra, “Local search in combinatorial
optimization,” 1997.

[9] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng,
“Quality driven web services composition,” in World Wide Web Confer-
ence Series, 2003, pp. 411–421.

[10] T. Yu and K.-J. Lin, “Adaptive algorithms for finding replacement
services in autonomic distributed business processes,” in Autonomous
Decentralized Systems, 2005. ISADS 2005. Proceedings, april 2005, pp.
427 – 434.

[11] H. Saboohi, A. Amini, and H. Abolhassani, “Failure recovery of com-
posite semantic web services using subgraph replacement,” in Computer
and Communication Engineering, 2008. ICCCE 2008. International
Conference on, may 2008, pp. 489 –493.

[12] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive monitoring and
service adaptation for ws-bpel,” in World Wide Web Conference Series,
2008, pp. 815–824.

289

