
ALARM: Autonomic Load-Aware Resource
Management for P2P Key-value Stores in Cloud

Can Zhang
School of Software

Shanghai Jiao Tong University

Shanghai, China

Email: zhangcan@sjtu.edu.cn

Haopeng Chen
School of Software

Shanghai Jiao Tong University

Shanghai, China

Email: chen-hp@sjtu.edu.cn

Shuotao Gao
School of Software

Shanghai Jiao Tong University

Shanghai, China

Email: shuotao.gao@gmail.com

Abstract—This paper presents ALARM, an autonomic load-
aware resource management algorithm that can be used to
manage physical machines or virtual machines in cloud, which
participate in a P2P key-value store. A lot of existing key-value
stores claim that they are elastic enough to scale up or down
with no downtime or interruption to applications. However, the
question that when the scaling up or down should take place has
still not been resolved. The situation may get worse if the data
store consists of hundreds of machines, for it’s unrealistic for a
system administrator to monitor the system and add/remove a
machine manually. Fortunately, cloud computing and virtualiza-
tion technology have enabled the real-time provision of virtual
machines and a way of managing virtual machines without
human interference. By supervising the utilization of multiple
resources (CPU, memory, network IO, etc.) in virtual machines
hosting the data store, our ALARM algorithm will take effect
when some of the machines become overloaded or underloaded.
The experiment result shows that ALARM helps the Open Chord
data store, an open-source implementation of the Chord protocol,
scale up and down according to the resource usage in the virtual
machines.

Keywords—cloud computing; P2P key-value stores; resource
management;

I. INTRODUCTION

Cloud computing is believed to change the way we get

access to data, and consequently has a great impact on the

database industry [1]. While the introduction of the relational

model by Codd in 1970 [2] was regarded as one of the success

stories of the computer science discipline, relational databases

are now being criticized for their limitations in scaling up,

complex data structure, and also poor query performance with

SQL [3][4]. An increasing number of web 2.0 applications

and the emergence of cloud computing platforms are calling

for a more distributed, easily-scalable and highly-efficient

data store. As a result, a growing number of developers and

researchers are turning to various non-relational databases like

Cassandra[5], Apache CouchDB[6], and MongoDB[7], etc.

Furthermore, when Amazon published a paper on Dynamo[8],

its P2P key-value storage system for internal use, key-value

stores began to attract interest both in academic fields and in

IT industry. Among these key-value stores, three of the best-

known ones are Amazon’s Dynamo, Google’s Bigtable[9], and

the Apache Cassandra open sourced by Facebook in 2008.

Though key-value stores are poised to be the most promis-

ing candidate databases in cloud, they have not been fully

developed, and a lot of vendors and developers are working

on projects to improve their fault-tolerance, enrich their data

models, and so on. In this paper, we mainly focus on the

resource management problem encountered in these P2P key-

value stores, for example Dynamo and Cassandra. In fact,

by using technologies like Consistent Hashing[10], a lot of

existing key-value stores are elastic enough to scale up or

down with no downtime or interruption to applications. How-

ever, for a typical key-value store that consists of hundreds

of machines, it’s unrealistic for a system administrator to

monitor the system and add/remove a machine manually.

Fortunately, cloud computing and the virtualization technology

[11] have enabled the real-time provision of virtual machines

and a way of managing virtual machines without human

interference. Thus, we present ALARM - an autonomic load-

aware resource management algorithm with respect to the

utilization of multiple resources in the P2P data stores. On

the one hand, for an overloaded virtual machine, the load-

aware algorithm will add a new virtual machine to take over

some load from it. On the other hand, the algorithm will try

to merge a pair of underloaded virtual machines into one, and

stop the other one.

This work is meaningful to both cloud platform providers

and cloud platform consumers: (i) for cloud platform provider-

s, it helps save energy in data centers by starting up or shutting

down virtual machines on demand. For example, Decandia

et al.[8] discussed three load-balancing strategies used in

Dynamo; (ii) for cloud platform consumers, some of their

applications may be data-intensive so that pulling data from

cloud storage provided by cloud platform providers may be

inefficient and costly. What’s more, customers may be worried

about the data lock-in risk if they choose to manage their

data through storage APIs provided by the cloud platform.

Therefore, for those who prefer to build their own P2P key-

value stores in cloud, our load-balancing algorithm will help

them achieve the economic efficiency [12].

A. Our Contributions

The contributions of this paper are:

1 The ALARM algorithm presented in this paper provides an

autonomic way of resource management for P2P key-value

2011 Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.83

405

2011 Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.83

405

2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.83

405

2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.83

404

stores in cloud. Traditionally, the imbalance ratio(largest

load/smallest load) is a critical criterion in characterizing

the load distribution in P2P data stores. As a result, several

algorithms like [13][14][15] are proposed to ensure load-

balancing in the storage systems. However, a skew load

distribution is acceptable in the cloud environment, for we

care more about the resource utilization efficiency.

2 To the best of our knowledge, this is the first resource

management algorithm that considers utilization of multiple

resources (CPU, memory, etc.) for key-value stores. Tra-

ditionally, load-balancing in P2P data stores only focuses

on the disk usage of each machine in the system. From

our point of view, disk usage is not the single important

factor when measuring the load in the system. For example,

memory bottleneck will surely cause a serious performance

issue in the storage system.

3 The experimental result shows that our algorithm helps the

data stores scale up and down without human interference.

In a typical web application, the frequency of data usage

varies a lot on different machines in the data store, which

will result in different loads on two machines even they

have the same data volume. In light of this, ALARM is

based on a real-time supervision of multiple resource usage

on different machines, so that it helps the system scale up

and down according to the status of multiple resources.

B. Notation

In this paper, we will use the following notation.

n Is the number of resources measured in the system

ci,p Is the capacity of resource i at node p

ui,p Is the utilization of resource i at node p

opti Is the optimal utilization of resource i (we assume that

the optimal utilization is the same for all nodes)

λi Is the weight for resource i, where λi ∈ [0, 1] for all

1 ≤ i ≤ n and
∑n

i=1 λi = 1 holds

The rest of the paper is organized as follows. Section

2 presents the basic model of our resource management

algorithm. Section 3 shows the system design of the resource

management solution for P2P data stores. The experimental

results of a prototype of the ALARM algorithm on top of

the Chord lookup system are shown in Section 4. Section 5

surveys some related work. Finally, the paper is concluded in

Section 6.

II. BASIC MODEL

Fig. 1 shows the basic resource-management architecture

for P2P key-value data stores. As is shown in Fig. 1, there are

two types of nodes in our architecture, namely virtual node and

physical node. Typically, data stored in a P2P data storage are

in a distributed manner, and the computer which is responsible

for storing part of the data is known as a node. However, in our

architecture, these nodes participating in the P2P data storage

are defined as virtual nodes, and several virtual nodes can

Fig. 1. Basic Resource Management Architecture for P2P data stores

be hosted on a physical node (e.g., a computer or a virtual

machine in cloud).

Generally speaking, our resource management algorithm is

designed to achieve a better utilization of multi-resources on

physical nodes by transferring or splitting virtual nodes. The

resource-management algorithm is composed of four opera-

tions: target, merge, split and data movement. The procedure

works as follows: (i) target: our algorithm checks periodical-

ly whether a physical node should be targeted. A physical

node will become targeted because it’s either underloaded

or overloaded; (ii) merge/split: for an targeted underloaded

physical node, the resource management algorithm will try

to merge another underloaded node with it; for an targeted

overloaded node, part of the data will be moved to a newly

started physical node; and (iii) data movement: finally, a

data movement operation will be performed. In the following

paragraphs, we will explain the four operations in details.

A. Target Operation

As mentioned above, a physical node will be targeted if it

becomes underloaded or overloaded. For a physical node p,

the target function T (p) is defined as:

T (p) =

⎧⎪⎪⎨
⎪⎪⎩

overloaded, ∃i, ui,p > opti (1a)

underloaded,
n∑

i=1

λi(opti − ui,p) > t (1b)

normal, otherwise (1c)

where t is the threshold value of the target operation, and

t ∈ [0, 1]. The parameters t, opti(i = 1..n), and λi(i = 1..n)
are all configurable values, which can be set and tuned

by the system administrator. By considering resources like

CPU, network bandwidth, and memory, the decision is made

according to the utilization status of these resources. If any of

the resource utilization exceeds the optimal value, the physical

node becomes an overloaded node(1a). It makes sense because

any resource may cause a significant slowndown in the system

performance. If the calculated value (
n∑

i=1

λi(opti − ui,p))

exceeds the configured threshold value t, the physical node

becomes an underloaded one(1b). In fact, the selection of

parameters t and opti is non-trivial work. A larger opti or

406406406405

smaller t value may lead to higher resource usage and thus

fewer physical nodes, but may make the system vulnerable to

a sudden burst of user requests. For now, we simply specify

a moderate value (e.g., 0.8) to each opti(i = 1..n) parameter,

and a more rational method for parameter selection may be

discussed in the future. In addition, as the target operation is

executed periodically (e.g., every 30 minutes), ui,p represents

the general resource status during the execution interval. For

now, we use the average usage of each resource during the

execution interval as the value ui,p(i = 1..n). By averaging the

utilization value, it prevents the algorithm from overreacting

to abnormal but benign transient situations (e.g., 95% usage

of CPU within 10 seconds).

B. Merge Operation

When a physical node becomes underloaded, the merge

operation will be executed. It’s possible that the resources of

the two nodes may have different capacities. Let u′
i,p1 and

u′
i,p2 be the expected usage if the two nodes are merged

to node p1 and node p2 respectively. We get the following

equations:

u′
i,p1 =

ui,p1ci,p1 + ui,p2ci,p2
ci,p1

(2a)

u′
i,p2 =

ui,p1ci,p1 + ui,p2ci,p2
ci,p2

(2b)

Nodes p1 and p2 can become a merging pair when u′
i,p1 or

u′
i,p2 is below the optimal value. Thus, the merging pair must

satisfy at least one of the following two conditions:

u′
i,p1 ≤ opti, ∀i ∈ [1, n] (3a)

u′
i,p2 ≤ opti, ∀i ∈ [1, n] (3b)

If one of the conditions is met, suppose it’s (3a), then we get

the matching evaluator M(p1, p2) as:

M(p1, p2) =

n∑
i=1

λi(opti − u′
i,p1) (4)

If both of the conditions are met, the M(p1, p2) is:

M(p1, p2) =

min

{
n∑

i=1

λi(opti − u′
i,p1),

n∑
i=1

λi(opti − u′
i,p2)

}
(5)

The smaller the matching evaluator is, the closer the resource

utilization is to the optimal value. If more than one pair

is found for the targeted node, the pair with the smallest

M(p1, p2) value will be chosen as the merging pair. If no

pairs are found, it means the load on other nodes are not that

light as this node, so nothing should be done.

In fact, a merging mate for the underloaded node can be

found in a centralized way or a distributed way. On the one

hand, a centralized controller may maintain the information

of all the available physical nodes in the data storage. Thus,

by querying the centralized controller, an underloaded node

can get a list of available nodes and check if they meet

the condition(2). On the other hand, the task of pairing

two underloaded nodes can be performed by self-organizing

agents: a merging agent may be generated on the underloaded

node, and then finds a suitable merge mate for this node by

hooping over the P2P network overlay. The second solution is

more fault-proof, for the simple reason that it does not have

any single point of failure. However, it’s not that efficient as

the first solution. Currently, we design our ALARM algorithm

based on a centralized controller, and a distributed solution

may be implemented in the future.

C. Split Operation

The split operation is invoked if a physical node is targeted

as an overloaded node. At this time, a new physical node has to

be started, for merging another node with this one will lead to

an even more overloaded node. However, the split operations

for a physical with one virtual node and the one with multiple

virtual nodes are a little different. For a physical node which

has exactly one virtual node, a new physical node will be

started with a virtual node taking half volume of the data from

the targeted physical node. For a physical node which hosts

more than one virtual node, randomly choose a virtual node

and move it to the newly added physical node.

D. Data Movement Operation

The last sub-step of both split operation and merge operation

is data movement. The data movement operation could be

accomplished in two ways: virtual node splitting and virtual

node transferring. When splitting an overloaded physical node:

if the physical node has only one virtual node, this virtual

node needs splitting; otherwise, the physical node has multiple

virtual nodes and one of these virtual nodes needs transferring.

When merging two underloaded physical nodes, all the virtual

nodes in one physical node needs transferring to the other

physical node. These two ways of data movements could be

achieved with the help of the virtual node joining and leaving

mechanisms provided by the P2P data stores. The virtual

node splitting can be implemented by adding a new virtual

node which will join in and take over part of data on the

overloaded physical node. The virtual node transferring can

be implemented by kicking out a virtual node on one physical

node and adding an identical virtual node on the other physical

node. For example, if the P2P key-value store uses distributed

hash table protocols as its data distribution protocol such as

Chord, we can add a virtual node B whose id is between

the virtual node A on the targeted physical node and A’s

predecessor, then the data in A is split and B takes over part

of the data.

III. SYSTEM DESIGN

The resource management architecture is composed of four

components: the Storage Control module, the Status Collector

module, the Virtual Node, and the core ALARM module

(Fig.2). First, the Storage Control module is responsible for

maintaining a list of available physical nodes in the data

store, and interacting with the Cloud platform to start/stop a

407407407406

Fig. 2. ALARM System Architecture

physical node(virtual machine). Second, the Status Collector

module collects the resource utilization on the local machine

periodically (e.g. 20 seconds). Also, it stores the history

data in a local lightweight database. Third, the Virtual Node

module is responsible for data storage. The entire data in

the data store are partitioned into fragments, each of which

is hosted by one Virtual Node. Data operations such as

insert/retrieve/update/delete are handled by the virtual node.

Forth, the ALARM module is the controller in a physical node.

It is responsible for handling resource adjustment, invoking

operations like target, split, merge. In addition, it maintains

information about the virtual nodes within the physical n-

odes. In the following paragraphs, we will explain how these

modules interact with each other to complete the the resource

adjustment procedure.

A. Target Operation

The Status Checker in the ALARM module checks the sta-

tus collected by the Status Collector periodically, to determine

whether the physical node is overloaded or underloaded. Only

in these two cases, would the physical node be targeted and a

new resource adjustment task be triggered: the split operation

is started for the overloaded node, and the merge operation

for the underloaded one. If the load on the physical node

is normal (neither overloaded nor underloaded), the ALARM

module will do nothing until next round of status checking.

B. Split Operation

In the split operation, the ALARM module first asks the

Storage Control to start a new physical node via the Storage

Control API. On the new physical node, a new virtual node

will be started to take over some data from the overloaded

physical node. Again, the data is transferred to the new node

through joining protocol enabled by the P2P data stores.

C. Merge Operation

In the merge operation, the ALARM module first asks the

Storage Control for a list of available members in the data

store. Second, the Status Retriever in the ALARM module will

try to get the status of each available member by communicat-

ing with the member’s ALARM module. Third, the ALARM

module calculates the matching evaluator(4) of each possible

pair. Finally, the one with the smallest matching evaluator is

selected as the merging pair, and the data movement operation

will be started.

D. Data Movement Operation

In the case of overload, data are moved from the overloaded

one to the newly-started one. ALARM picks only one of

virtual nodes in the overloaded physical node and moves it

onto the other physical node.

In the case of underload, all the virtual nodes in one physical

node will be moved to the other physical node. After all the

virtual nodes are moved out from one physical node, ALARM

will request the Storage Control to stop this physical node via

the Storage Control API.

Currently, in any period, only one adjustment task is allowed

in the current system. The reason is that parallel adjustments

would not only increase the complexity of the algorithm and

the implementation, but also leads to an unstable system be-

cause of frequent up and down of physical nodes. In addition,

the data consistency and concurrency problems are out of our

concerns. On the one hand, the data movement is realized by

joining/leaving of virtual nodes. Thus, it’s the responsibility

of the data store to maintain the data consistency among the

system. On the other hand, data in the key-value stores are

seldom modified, so that the data movement may not cause a

serious data consistency problem in the system.

IV. EXPERIMENTAL EVALUATION

In this section, we present the results from our experiment

of the resource management algorithm on Chord, a distributed

hash table protocol. Our implementation is based on Open

Chord[16], an open-source implementation of the Chord proto-

col. In the following paragraphs, we will show our experiment

environment setup, the experiment senario, and also analysis

and explanations of the experiment results.

A. Experiment environment setup

A J2EE web application(Storage Control) and five physical

servers with hypervisor Xen 3.4.0 are used to simulate a cloud

infrastructure. Storage Control runs in Tomcat7 and provides

an interface for admin operations, such as create/start/stop of

virtual machines which are hosted by the five physical servers.

The system configurations of physical servers are shown in

Table I. Virtual machine templates of different configurations

are shown in Table II. Storage Control and all the physical

servers with Xen hypervisor provide a mimic Cloud Platform.

Besides, Storage Control maintains the member list of the

virtual machines (physical nodes) for the Open Chord data

store. A corresponding client API for the features of Storage

Control is created and serves as the Storage Control API. Until

now, the cloud infrastructure is ready for the experiment.

Also, the Status Collector module on each virtual machine is

responsible for collecting the status of the machine. The Status

Collector collects utilization of CPU, Memory, Network and

so on periodically(e.g., every ten seconds) and saves them to

408408408407

TABLE I
SYSTEM CONFIGURATIONS OF PHYSICAL MACHINES

Physical Server CPU Memory Virtual Machine Number Xen Version
server1 AMD Athlon(tm) 64 X2 Dual Core Processor 5200+ 2046M 1 3.4.0
server2 AMD Athlon(tm) 64 X2 Dual Core Processor 5200+ 2046M 2 3.4.0
server3 AMD Athlon(tm) 64 X2 Dual Core Processor 5200+ 2046M 2 3.4.0
server4 Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz 8027M 8 3.4.0
server5 Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00GHz 8027M 9 3.4.0

TABLE II
CONFIGURATIONS OF VIRTUAL MACHINE TEMPLATES

Virtual Machine Template Virtual CPU Number Memory Network Bandwidth OS Kernel
Openchord 1 256M 1MB/s Linux 2.6.18
Reciever 1 512M 5MB/s Linux 2.6.18

Client 1 512M 5MB/s Linux 2.6.18

Fig. 3. Experiment senario

disk. Here, we use SIGAR[17], one open-source Java API to

access system information.

B. Experiment Senario

Fig. 3 shows the basic architecture of the experiment

senario. In each experiment, seven virtual machines, created

from template Openchord, serve as physical nodes, which host

virtual nodes in the Open Chord data store. And three virtual

machines, created from template Reciever, serve as request

reciever servers. Another ten virtual machines, created from

template Client, are used as clients to send requests, simulating

the user queries according to the 1998 World Cup Web site

Access Logs [18]. We treat every url on the website as an

data entry in the data store. With Chord protocol, these urls

are distributed on different virtual nodes. And then, the clients’

requests are sent to the request recievers and dispatched to the

appropriate virtual nodes in the Open Chord data store. In

addition, the 1998 World Cup Web site Access Logs record

the user requests to the web site from May 1th to July 26th,

and we choose the logs on June 28th as the experimental data.

The number of client requests per second is shown in Fig.4.

C. Experimental Results

Our experiments show the following results:

1) In a typical web application like the 1998 World Cup Web

site, the frequency of data access vary a lot on different

nodes in the data store(Fig.5, 6, 7).

2) Our algorithm helps the P2P key-value store scale up

when the load on some virtual machines is heavy, and

scale down when the load becomes light on the virtual

machines(Fig.8).

There are totally 76859 url entries in the 1998 World Cup

Web site. However, as is shown in Fig.5, during the interval

from 13:30 to 22:00 on June 28th, only about 2000 entries

were accessed by the clients. This is accordant with the

resource utilization on different virtual machines shown in

Fig.6 and Fig.7: Fig.6 shows the utilization of CPU, memory,

and network IO of the request receivers. The load is similar

to the load of client requests in Fig.5. However, in Fig.7, we

find that the load coming to different physical nodes are quite

different. Because the Open Chord uses consistent hashing as

its data distribution algorithm, we assume that the data volume

distributed to each node is almost the same. As a result, the

different resource consumptions on different virtual machines

demonstrate that even two nodes with the same volume of data

may have totally different resource utilization.

Fig.8 shows the number of physical nodes (virtual ma-

chines) in the Open Chord with our ALARM resource manage-

ment algorithm. The result shows that during the first two and

a half hours, because of a relatively light load in the system,

the number of virtual machines declined to only 2. However,

as the peak of client requests came at about 5:30, one node

was added and the number of physical nodes increased to 4.

But it dropped back to 3 after the peak passed. The number of

physical nodes had not changed until another peak of requests

came at about 8:30. As a result, we come to the conclusion

that the scale of the system is accordant with the load of the

system, which demonstrates the effectiveness of our ALARM

algorithm.

V. RELATED WORK

Rao et al.[19] presented three schemes to do the balancing

in highly heterogeneous P2P systems, namely the one-to-

one scheme, the one-to-many scheme and the many-to-many

scheme. Also, data are exchanged between heavy nodes and

light nodes by transferring virtual servers. However, they as-

sume that only one bottleneck resource exists in P2P systems,

which is not realistic. In this paper, our algorithm supervises

409409409408

(a) vm50 (b) vm51 (c) vm56

Fig. 6. Resource utilization of Request Receivers

(a) vm57 (b) vm52 (c) vm53

(d) vm54 (e) vm55 (f) vm44 (g) vm43

Fig. 7. Resource utilization of Open Chord servers without ALARM

�������	
��

������

�	
	� ��
�� ��
	� �
�� �
	� ��
�� ��
	� ��
�� ��
	� ��
�� ��
	� ��
�� ��
	� ��
�� ��
	� ��
�� ��
	� ��
��

��
���

�

�

���

��

���

��

	��

	�

���

��

��

�
��
	

�

Fig. 4. Number of requests

������������

��������		�	

��
���
��
���
��
���
��
���
��

	
���

��

��

�

��

�

��

��

��

��

��

���

�
��
��
��

Fig. 5. URL accesses

multiple resource utilization in the system, so that we can

detect utilization bottlenecks of multiple resources.

�������	
����������	��������������

��������	
�����

����� ����� ����� ����� ����� ����� ����� ����� �����

�������

�

�

�

�

�

�

�

�

�

�
��
��
��
	

��
�
��
��
���
	�
��

Fig. 8. Number of physical nodes

Byers et al.[13] applied the ”power of two choices”[20]

paradigm to solving the DHTs’ load balancing problem.

Specifically, two or more hash functions are used to pick

candidate peers for each item to be inserted. Among these

candidate peers, the one with the least load stores the item,

while the others maintain a redirection pointer to this peer.

Also, the redirection mechanism is used to support other load

balancing strategies like load-stealing or load-shedding. In

fact, by introducing redirection pointers in the systems, the

approach may end up maintaining a unpredictable number of

pointers, which may cause a lose in searching efficiency and

also take up too much storage space.

Karger and Ruhl[14] proposed two distributed load-

410410410409

balancing protocols, balancing the distribution of the key

address space to nodes and the distribution of items among

the nodes respectively. The first protocol achieves a O(1/n)
fraction of the address space for every node with a logarithmic

factor decrease of space and bandwidth usage. Also, the

second protocol solves the load-balancing problem by moving

data between two randomly-chosen lightly- and heavily-loaded

nodes. Our work is more related to the second data-moving

protocol. However, we do not always do the load-balancing

work to get a small imbalance ratio. Rather, we do the resource

adjustment task only if necessary, for example, when the

resource usage exceeds our expectation.

Zhu and Hu[21] proposed a load-balancing scheme by using

the concept of virtual servers, but in a proximity-aware man-

ner. With the guide of the proximity information, the virtual

servers are reassigned and transferred between physically close

heavily loaded nodes and lightly loaded nodes. However, their

scheme relies on an extra overlay on top of the DHT, which

may make the P2P systems more complicated and vulnerable

to failures. Again, in their work, they only care about single

resource bottleneck in P2P systems.

Ganesan et al.[15] presented a Threshold Algorithm to bal-

ance range-partitioned data in parallel databases, as well as in

P2P systems.Their analysis and simulation results showed that

the Threshold Algorithm could achieve a desirable imbalance

ratio with a relatively small amortized cost of load balancing.

Forestiero et al.[22] presented Self-Chord, a self-organizing

structured P2P system. It achieves the balancing of storage

responsibilities through the activity of ant-inspired mobile

agents. However, the system takes a significant period of time

to arrive at the steady state, if a large number of data are

inserted to the system concurrently. On this occasion, the

system may not work correctly.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present ALARM - an autonomic load-

aware resource management algorithm with respect to the

utilization of multiple resources in the P2P data stores. Con-

sidering utilization of multiple resources (CPU, memory, etc.)

for key-value stores, the algorithm detects bottlenecks in the

supervised resources. As it is based on a real-time supervision

of the resource usage on physical nodes, our algorithm invokes

a resource adjustment task when some physical nodes become

overloaded or underloaded. However, a lot of work has to

be done in the future. Some of them are: a decentralized

way of the ALARM architecture, analysis on the behavior

of the algorithm when it’s applied to a large scale data store

composed of hundreds of thousands of physical nodes.

VII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful

feedback, the SJTU REINS research group and Qing Zheng

for useful discussions and paper proof-reading.

REFERENCES

[1] D. J. Abadi, “Data management in the cloud: Limitations and opportu-
nities,” IEEE Data(base) Engineering Bulletin, vol. 32, pp. 3–12, 2009.

[2] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of The ACM, vol. 13, pp. 377–387, 1970.

[3] N. Leavitt, “Will nosql databases live up to their promise?” Computer,
vol. 43, no. 2, pp. 12 –14, feb. 2010.

[4] M. Stonebraker, “Sql databases v. nosql databases,” Commun.
ACM, vol. 53, pp. 10–11, April 2010. [Online]. Available:
http://doi.acm.org/10.1145/1721654.1721659

[5] “Cassandra.” [Online]. Available: http://cassandra.apache.org/
[6] “Apache couchdb.” [Online]. Available: http://couchdb.apache.org/
[7] “Mongodb.” [Online]. Available: http://www.mongodb.org/
[8] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in Symposium on Operating
Systems Principles, 2007, pp. 205–220.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems, vol. 26, pp. 1–26, 2008.

[10] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
ser. STOC ’97. New York, NY, USA: ACM, 1997, pp. 654–663.
[Online]. Available: http://doi.acm.org/10.1145/258533.258660

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
art of virtualization,” in Proceedings of the nineteenth ACM
symposium on Operating systems principles, ser. SOSP ’03. New
York, NY, USA: ACM, 2003, pp. 164–177. [Online]. Available:
http://doi.acm.org/10.1145/945445.945462

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view
of cloud computing,” Communications of the Acm, vol. 53, no. 4, pp.
50–58, Apr. 2010.

[13] J. Byers, J. Considine, and M. Mitzenmacher, “Simple load balancing
for distributed hash tables,” pp. 80–87, 2003.

[14] D. R. Karger and M. Ruhl, “Simple efficient load balancing algorithms
for peer-to-peer systems,” in ACM Symposium on Parallel Algorithms
and Architectures, 2004, pp. 36–43.

[15] P. Ganesan, M. Bawa, and H. Garcia-molina, “Online balancing of
range-partitioned data with applications to peer-to-peer systems,” in Very
Large Data Bases, 2004, pp. 444–455.

[16] Distributed and M. S. G. of Bamberg University, “Open chord.”
[Online]. Available: http://open-chord.sourceforge.net/

[17] “Sigar.” [Online]. Available: http://www.hyperic.com/products/sigar
[18] M. Arlitt and T. Jin, “1998 world cup web site access logs,” 1998.

[Online]. Available: http://www.acm.org/sigcomm/ITA/
[19] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica,

“Load balancing in structured p2p systems,” in Peer-to-Peer Systems,
2003, pp. 68–79.

[20] A. W. Richa, M. Mitzenmacher, and R. Sitaraman, “The power of two
random choices: A survey of techniques and results,” COMBINATORIAL
OPTIMIZATION, vol. 9, pp. 255–304, 2001.

[21] Y. Zhu and Y. Hu, “Efficient, proximity-aware load balancing for dht-
based p2p systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, pp. 349–361, 2005.

[22] A. Forestiero, C. Mastroianni, and M. Meo, “Self-chord: A bio-inspired
algorithm for structured p2p systems,” in Proc. 9th IEEE/ACM Int. Symp.
Cluster Computing and the Grid CCGRID ’09, 2009, pp. 44–51.

411411411410

