
Dynamic Resource Arrangement in Cloud
Federation

Yisheng Wang, Haopeng Chen
School of Software, Shanghai Jiao Tong University

Shanghai, 200240, China
Email: easonyq@hotmail.com, chen-hp@sjtu.edu.cn

Abstract—Cloud Federation is one of the ideal solutions to
this random burst traffic problem. It focuses on ‘borrowing’
computing resources from foreign Clouds when home Cloud is
about to overloaded and ‘leasing’ resources to foreign Clouds
when home Cloud is free. Considering crucial importance of
business value for a Cloud provider, we need to perform some
dynamic, reasonable and simple rules or mechanisms to help
Cloud provider making better billing decisions and improving
the overall performance in a federation scope. Cloud Federation
is implemented by network connections, so in common situation
the best candidate Cloud to be federated enjoys a higher speed
of connection to the home Cloud. This remains a problem that
several Clouds located in a subnet have a high possibility to be
federated with each other, thus complicated dependency relations
among them will appear. In this paper, we have carried out a
series of mechanisms involving dynamic resource arrangement in
establishment and deconstruction of a Cloud Federation, in order
to sort out these dependency relations which are the potential
risk factors to the overall performance.

Keywords-Cloud Federation, dynamic resource arrangement,
dependency relation;

I. INTRODUCTION

Most people cannot distinguish Cloud from other “popular”
definitions such as grid computing, distributed computing
and parallel computing. All of them share the notion that
“we do not compute on local computers, but on centralized
facilities operated by third-party compute and storage utili-
ties” [9]. Actually, Cloud Computing puts more emphasis on
providing users with computing resources (such as storage,
CPU, memory, etc) in Iaas, Paas and Saas mode while Grid
Computing is project-oriented and focus on only computing
resources in most cases [10] [11]. Although problems like
stability of Cloud-app and security of data transmission still
remain unsolved, it is widely believed that Cloud will have
a promising future and an increasing proportion of online
application will be moved to Cloud Platform [20] [21]. Cloud
Computing has many advantages that attract increasingly more
business users such as low deployment cost, high deployment
speed, pay-as-you-go and service flexibility. Modern Cloud
platforms like AWS [17] and Amazon EC2 serve as IaaS,
Google App Engine [6] and Windows Azure provide users
with services in SaaS and PaaS mode. This trend of building
up their commercial Cloud platform in many IT companies is
also implying this idea.

Cloud Federation is proposed as the next hot-spot in Cloud
researching field, but researchers do not reach an agreement
in details. Many new terms have then been coined as “Inter-
cloud” [16] or “Cross-cloud” [15]. The ultimate goal of Cloud
Federation is to enable message transmission and collaboration
among Clouds so that resources located in different Cloud plat-
form can be used to serve a single service. Cloud can ‘borrow’
some virtualized resources from other Clouds. Similarly, free
resources can also be ‘leased’ to other Clouds for business
consideration. In federation story, client requests can always
be served, even if the target Cloud is already saturated. Home
Cloud is able to serve more customers than its original capacity
through ‘borrowing’ resources. And free resources can also be
‘leased’ outside, which is better than either leaving it running
idly or simply shutting it down [7]. But it also due to some
problems such as the chaos of dependency relationships, too
much resource debris, etc. These can lead to the decrease of
resource utilities, so we should try to avoid and solve these
problems.

The rest of paper is organized as follows: Section 2 lists
some motivations of our work. Section 3 shows our approach
about how to deal with the resource leasing in Cloud Feder-
ation. Section 4 summarizes some simulation evaluations of
the mechanisms. Section 5 introduces related work by others
recently. Section 6 summarizes the main contribution of the
paper and comments on further research.

II. MOTIVATION
In order to investigate the federation situation more clearly,

we made a dependency diagram to show its ‘borrowing’
relationship among Clouds, in which Clouds are illustrated by
a rectangle, sometimes with a unique filling color or pattern.
We put a solid arrow from Cloud A to Cloud B if there
exists a ‘borrowing’ relationship from Cloud A to Cloud B,
or said, Cloud A uses some part of the resources from Cloud
B by redirecting client requests or copying compiled source
codes and running remotely. Such diagram is called ‘Resource
Dependency Flow’ in Cloud Federation which is shown in
figure 1.

In Resource Dependency Flow Diagram (for short, RDFD),
there may exist simultaneous appearances of borrowing and
leasing in a Cloud. A more common situation is to form a
ring, which we call it ‘resource dependency ring’. It would
make a negative impact to the overall performance. Our

2012 IEEE Asia-Pacific Services Computing Conference

978-0-7695-4897-5/12 $26.00 © 2012 IEEE
DOI 10.1109/APSCC.2012.75

50

2012 IEEE Asia-Pacific Services Computing Conference

978-0-7695-4897-5/12 $26.00 © 2012 IEEE

DOI 10.1109/APSCC.2012.75

50

�

Fig. 1. Resource Dependency Flow in Cloud Federation

�

Fig. 2. Resource Dependency Ring in Clouds

mechanisms try to eliminate this situation along with the
ring, thus improve performance of running services along with
the business benefits for a Cloud provider. Figure 2 shows a
common resource dependency ring in Cloud Federation. Here
resource dependency ring is displayed intuitively, with several
Clouds and circular arrow pointing to each other. All the three
Clouds borrowing and leasing resources at the same time.

Cloud Federation is implemented by deploying or migrating
services to foreign Cloud. If this service needs data in the
process of running, it will make a data fetch request to home
Cloud. Note that it is not reasonable to transmit all data to
foreign Cloud along with compiled source codes, for three rea-
sons [1]. First, data may be huge enough so that transmitting
time becomes unacceptable. Second, it is most the cases that
common services only need a small part of data, rather than
all, so it is quite time-consuming to transmit much unnecessary
data. Third, and the most important one, users perhaps do not
trust foreign Cloud enough, thus it is arbitrary and irrational
to transmit them without user’s approval. Given these, we can
easily get the conclusion that time consumption of services on
remote nodes is more than that on local nodes due to the time
consumption of data transmission, let alone multiple times
of transmissions involved in some data-intensive services. To
conclude, we need to prevent the simultaneous appearance of
borrowing and leasing resources in one Cloud. This is also the
main goal of the resource arrangement mechanism performed
in this paper. An ideal dependency relation started from Figure
2 is shown in Figure 3.

It is clear that the situation after re-arranging is better than
the original one mainly on the fact that only Cloud B need
to borrow resources from Cloud D, and both Cloud A and
Cloud C run their services locally. The rule we must observe
is borrowing and leasing resources should not happen in a
Cloud simultaneously.

�

Fig. 3. RDFD after Re-arranging

III. APPROACH
How to deal with the federated resources will be discussed

in the following, involving some algorithms and mechanisms.
We divide the federation strategies into two parts, dealing with
scaling-up and scaling-down respectively. Scaling-up means a
Cloud need to scale up by borrowing resources from other
Clouds in order to serve extra client requests. In scaling-
up part, we focus on when and how to borrow resources
from other Clouds, along with some detailed rules and points
that we must obey to ensure the performance and rationality
of the federated system. Scaling-down means a Cloud has
already borrowed some resources from other Clouds, and
then some local resources are released. It should move its
insourced services from remote Cloud to local, in order to
avoid the simultaneous appearance of borrowing and leasing.
The effectiveness of this moving action will be discussed in
the following sub-section, and the simulation evaluation about
this moving will be displayed in Section 4.

A. Scaling-up part
There are varieties of resources in a Cloud, such as CPU,

memory, storage, network bandwidth, etc. Dynamic resource
arrangement in Cloud Federation will involve all these differ-
ent types of resources, or some certain combination of these
resources. Moreover, resource usage is varying all the times
during running period of all services. It is believed that mon-
itoring all these resource usage will be a tough job, because
we are able to get information about all the resource usage of
each computer, but difficult to gain the exact information of
each VM [14]. We should put this problem aside and make
an assumption that we are able to get all these information
at any time, just like taking photographs to all resources in a
Cloud. Moreover, for easiness consideration, ‘resources’ in our
model can be thought as a kind of high level and abstraction of
generic resources. It should be admitted that different type of
resources varies much. For example, difference of CPU usage
in different period of a running service can be very notable
while storage usage is relatively stable. Different arrangement
towards different type of resources is also important, which
we will leave to our future work.

If we take a look at a Cloud in Cloud Federation, we can
roughly divided it into three parts, named OutRent part, Local
part and Free part respectively.

5151

�

�

�
�

�

Fig. 4. Cloud Model

OutRent part means resources here are leased to other
Clouds. Services from other Clouds can be served here for
profits of leasing. Each service has its rent time and rent level
which indicates whether it can be moved at anytime. We have
designed a configurable property indicating three rent levels
and this property should be provided when resource leasing
takes place. Level 1 is the lowest level which means this
service can be moved to another Cloud at any time without
informing the original Cloud provider. Level 2 is similar, but
the foreign Cloud should query first whether this service can
be moved. Level 3 is the highest level indicating the service
cannot be re-located until it is completed. Cloud provider can
ask for a different charge towards different rent level, normally
higher level charges more. Services running in OutRent part
need to send data transmission request to federated Cloud if
they need data in their running period, and that maybe the
dominating drawbacks of their total execution time.
Local part contains resources for services running locally.

According to our views Local part should be allocated first.
Only when Local part cannot hold more services should these
services be located remotely. Services running locally do not
need to transmit data through network connection. Although
reading data from Cloud Storage may still be the bottleneck
of this service, it is affirmatively faster than running remotely
if other conditions keep the same.

Resources in Free part are on standby and can be allocated
to serve requests at any time. From a business view, Free
part should be as small as possible because Free part does
not generate any revenue but asks for standby costs such as
the electricity consuming, cooling, etc [12]. It should also be
pointed out that reserving Free part is essential for a Cloud
provider, otherwise the violation of SLA cannot be fixed at a
short time, thus leading to a huge SLA compensation. After
classifying the resources in a Cloud, we can carry out our
model of Cloud, which is represented by ‘C’ in Figure 4.

Because we are concentrating on the resource arrangement
in a Cloud, it is sensible to regard Cloud as the collection
of all resources. In the first formula of this model, we use
Rf to represent free resources in a Cloud, Rw to represent
the total resources in a Cloud and S to stand for all services,
including OutRent services and Local services. Moreover, S
can be further divided into three parts, So means OutRent
services, Si means insourced services and Sl means Local
services. It should be noted that insourced services are remote
services which running on remote Cloud. But their information
is saved locally, for both security and charging reasons. If there
are not any OutRent services, then So is an empty stack. The
same rule also happens on Sl and Si.

It can be inferred that it is the allocate resource request
sent from upper layer which driving the scaling up action.
So we should re-write the alloc resource method in resource
manager layer of a Cloud, which takes the amount of request
resources as the only input parameter. The detailed algorithm
is shown in algorithm 1.

Algorithm 1: Alloc Resource
input : Rr Amount of resources needed
output: Resources allocated locally or on remote nodes

1 if Rf ≥ Rr then
2 return alloc local resource(Rr);
3 end
4 if Rw ≥ Rr then
5 if requester is a Cloud provider then
6 return null;
7 end
8 An empty list MigrateQueue;

// we cannot use this.No == 0 to
judge whether more services can
be moved.

9 while (Rf < Rr + MigrateQueue.getTotalRes())
AND this.hasMoreServicesToBeMigrated() do

10 {s, C} ← findDestination(this)
// Migration Unit {Src, Dest, s}

means Service s moving from
Cloud Src to Cloud Dest

11 MigrateQueue.add({this, C, s});
12 end
13 if Rf < Rr + MigrateQueue.getTotalRes() then
14 while MigrateQueue.hasElement() do
15 migrate(MigrateQueue.pop());
16 end
17 return alloc local resource(Rr);
18 end
19 return this.rentRes(Rr);
20 end
21 while this.hasMoreServicesToBeMigrated() do
22 {s, C} = findDestination(this);
23 migrate(new MigrateUnit(this, C, s));
24 end
25 Create empty resource container returnRes;
26 add alloc local resource(Rw) to returnRes;
27 add this.rentRes(Rr - Rw) to returnRes;
28 return returnRes;

The only input parameter Rr means the amount of resources
needed. In our algorithm, we divided all situations into three
parts. The first part starts from line 2 to line 4. This is a
very simple and easy situation meaning free resource is bigger
than requested resource, thus we should allocate local resource
directly to upper layer and obey the rule that local resources
should be allocated first. The second situation starts from line
4 to line 24 indicating the requested resource is bigger than
the left free resource, but still smaller than the total resource.

5252

This situation mostly happens in the peak of the work-load
and the value of Cloud Federation reflects here. Firstly, a
migrate-queue is created in order to save all the services which
needed to be migrated. Then we select some OutRent service
and find a proper destination Cloud for it. After finding such
a pair, we put it into this queue and check again whether
free resource is enough to allocate to serve this request. If
so, we can migrate all services in migrate-queue and allocate
free resource directly (line 19). If not, that means even if we
migrated all OutRent services outside, we could still not get
enough free resource to allocate. Since federation cannot be
avoid and context-switch and transmitting of codes will take
extra time, it can be easily derived that the number of migrated
services should be as less as possible. That is also the reason
why we need to create a migrate-queue, rather than migrating
services directly. Under this situation, what we should do is
to keep all OutRent services and send a federation request to
other Cloud, in order to locate this new request remotely. We
must point out that if the requester is a provider, we should
reject this request in this situation. Because this will only add
unnecessary dependency relations among Clouds. The rest of
algorithm is dealing with the third situation, which serves for
the possibility that the requested resource is bigger than the
total resource of a Cloud. Although the probability of this
situation is little enough for us to ignore it because resources in
a Cloud is fairly huge towards a single service, we still add it to
our codes for the integrity and robust of the algorithm. In this
case, we should release as much OutRent services as possible
to ensure more part of the big service locating locally. Because
of the big size, federation is also inevitable. Actually we can
still stick to the rules displayed in the second situation, which
says that we should keep the OutRent services, but considering
the business reasons and the performance of the big service,
more local resources should be allocated to serve it.

The function findDestination at line 7 is implemented quite
briefly by invoking two core methods, responsible for selecting
a service out of OutRent services and finding a destination
Cloud to put it. The detailed implementation depends largely
on the business strategies of Cloud provider according to client
credits, historical trade data, charging price, etc. Each provider
should provide the strategy it use to pick out the candidate
service.

We should also note that only services with their rent level
lower than or equal 2 are able to be migrated. So each time we
check if there are any more services which can be migrated we
use a function this.hasMoreServicesToBeMigrated(), rather
than checking whether this.|So|equals0.

Another point which needs to be further discussed is that we
consider a service as an entirety which cannot be divided fur-
ther. No matter we decide to run it locally or remotely, it is not
recommended to divide it into several pieces and located these
pieces in different Clouds. An obvious shortage of this rule
is the internal fragmentation, but after knowing the reasons of
this rule, its disadvantage can also be accepted. It is known
that application today always contains some transactions which
need the manager to take some extra care. When it comes to

a distributed system, this ’extra care’ will become difficult
enough to make management cost boost. Consistency and
deadlock are two common problems in distributed system, and
the division of a service will cause these two problems, thus
increasing the cost and complexity of technical management.

B. Scaling-down part
In the previous sub-section we have discussed our algorithm

when dealing with allocating resources in a Cloud, or said
scaling-up. And we want to perform the most important and
only rule in scaling-down period: Moving OutRent services to
local node as soon as possible.

Scaling-down period happens when some resources are
released and Free part increased. There are two situations
leading to scaling-down period. The first happens when leasing
times of OutRent services end or the borrower decides to
end the renting relationship. The second is the completion
of local services. The increasing of free resources means
that it is able to run some extra local services now. We
should point out that for those services which are allocated
remotely, their source codes has already been kept a copy
locally. So when moving them to local Cloud, we only need to
save the running context in remote Cloud and transmit these
context information. Considering the rule about maintaining
the priority of local resources, we need to move OutRent
services to local node and end the renting relationship if
allowed. The reasons are listed in the following.
1) Time consumption in data transmission: The implemen-

tation of Cloud Federation has decided the fact that services
executing on remote nodes need data transmission when it is
running. For most services which dealing with querying in
database, the amount of data which need to be transmitted is
quite huge. Comparing with the speed of reading local data in
Cloud, the transmission speed of network connection is much
lower. Usually, we have two methods of transmitting data.
We can transmitting all data at the beginning or transmitting
needed data according to the request sent from services. Both
methods will do great harm to the overall performance of
Cloud Federation.

Transmitting all data at the beginning can arise two prob-
lems. The first and most obvious one is that the data could be
very large, large enough to make the transmission unaccept-
able. It should also be noted that some services do not need
to query much data as input, but will generate much data as
output. Such cases include the computing services involving
multiplication of several vectors. Another problem lies in the
consistency of two copies of data. Because the OutRent service
is transmitted to other Cloud, both home Cloud and foreign
Cloud will keep its data copies. In this case, remote copy
should be thought as the primary copy, but the extra cost of
management of two data copies still adds a strict limit to this
method.

Transmission according to requests seems like a good idea
because it is consistent to the business model in Clouds:
pay-as-you-go. But it still faces the problem of too much
transmission times. Network connection needs three times

5353

hand-shake in TCP protocol [2]. Its time consumption can be
roughly regarded as a constant. Too much transmission times
mean too much time is wasted in making network connection,
or more specific, three times hand-shake. But comparing with
the last method it is better. So we use this method as the
comparison in our simulation evaluation.
2) Business factors: There are generally two paying meth-

ods in Clouds: pre-paid and post-paid [8]. Pre-paid means
paying before using and post-paid is the opposite. Generally,
users may choose post-paid to minimize the wasting time of
occupying computing resources. Moreover, Cloud may have a
mechanism that once pre-paid rent fee is running out, it will
automatically change into post-paid mode. If a service is set to
post-paid, moving OutRent it to local node as soon as possible
can also do contribute to reduce costs because less occupying
time is used.

Actually, the decision about moving OutRent service to
local node should also be made carefully. Although in many
cases this rule will help to avoid the simultaneous appearance
of borrowing and leasing, it should still be cautious to be
executed in the following situations.

1. Services with small-scaled data
If a service does not need large-scaled data as its input or

output, its remote execution time will not differ much compar-
ing with its local execution time because time consumption on
data transmission through network connection is not so huge.
Such services contain scientific computing without much input
and output, stateless web-application with little or even no
database operations, etc.

2. Services are almost completed
According to our moving strategy shown earlier, time is

mainly cost in context-switching and transmitting context in-
formation when moving OutRent services to local Cloud. But
if a service is almost completed, it is recommended to wait for
its completion. More specific, if the sum of context-switching
time and transmitting context information time is bigger than
the rest renting time, moving is unnecessary. Further, because
the time consumption of context-switching and transmitting
context information is quite stable, it is reasonable to consider
it as a constant. In other word, user or Cloud provider can set a
threshold to represent this constant. Once the left renting time
is smaller than this threshold, moving it back will be rejected
by the resource manager layer.

C. Summary
In this section, we have carried out algorithms and mech-

anisms dealing with scaling-up and scaling-down period re-
spectively. First, this mechanism and algorithm ought to be
put in the Cloud itself rather than some third-party central
nodes because Cloud Federation should be regarded as an
extension functionality of a Cloud. In scaling-up period, we
have performed an algorithm to handle three situations hap-
pened in resource allocation. The main principle in resource
allocation is to keep the integrity of a service and to ensure that
local resource should be first allocated. If federation cannot
be avoided, keeping OutRent services and borrow resources

�

Fig. 5. Initial RDFD

from other Clouds is recommended. In scaling-down period,
we stick to a regulation that we need to move OutRent service
back as soon as possible mainly because of performances’ and
business’ consideration. Two situations are exceptional. They
are services with small-scaled data including both input and
output, and almost completed services. We will bring out the
simulation evaluation of this regulation in scaling-down period
in the next section.

IV. EVALUATION
In this section we want to give out some simulation evalua-

tion of our mechanism proposed in Section 3. Our mechanism
contains two parts indicating scaling-up and scaling-down
period. We want to demonstrate a case first in order to show
how it works, and then give out our simulation evaluation
about its improvement.

A. Case Study
Scaling-up part is to deal with the resource allocation

decisions to determine whether we should allocate services on
remote node. Since no one can predict how much resources
next client request asks, it is meaningless for us to weigh it
in quantitative way. So our evaluation will focus on a case to
show how mechanism works to eliminate resource dependency
ring.

Just taking the resource dependency ring described in Figure
2 as an example, we will explain its possible forming process
to show it is not just an assumption. We assume the initial
situation as illustrated in Figure 5.

We want to make some complement to this initial situation.
We assume that all Clouds share a same size, which means
they have the same resources, and we marked it 10 units. At
first, Cloud A was fully occupied, Cloud B was 90% used and
Cloud C was 70% engaged. Then Cloud A received a request
which asked for 1 unit of extra resource. So it asked B for
leasing. After that, B received a request asking for 3 units of
resources, and similar leasing relationship happened from B
to C. Thus, the situation illustrated in Figure 5 happened.

After the initial situation, we want to display how our
mechanism works. Assume that at some moment a service
running in Cloud A occupying 2 units of resources completed
and released all its resources. Then Cloud C asked A for 2
units of resources. If Cloud A did not comply with the scaling-
down rule, it would possibly arrange these 2 units of resources
directly to C, thus a resource dependency ring happened just

5454

�

Fig. 6. Initial RDFD

�

Fig. 7. Final RDFD after Using Mechanisms

the same as illustrated in Figure 2. Otherwise, if it stuck to the
scaling-down mechanism, it should first withdraw the service
which was running in B and occupied 1 unit of resource just
after the 2 units of resources was released. So when C wanted
to ask for leasing, Cloud A cannot provide any more resources.
It would reject the request sent by C and at the same time clean
the leasing relationship from A to B, thus a potential resource
dependency ring was eliminated. More intuitive illustration can
be seen in Figure 6.

The rejection of leasing resource would not be the whole
story. For Cloud B, 1 unit of resource were released and it
would also execute the scaling-down mechanism. But unfor-
tunately, in order to assure the integrity of services, nothing
would be done in Cloud B. Actually, before C asked A for
leasing, it would try to migrate its OutRent services to other
Cloud if possible according to the scaling-up algorithm. So C
might find some Cloud named D and migrated services with
3 units there. At last, it arranged its new request of service
asking for 2 units of resources locally, thus the final situation
is illustrated in Figure 7, which is similar to Figure 3 and at
the same time assuring the integrity of services.

B. Simulation evaluation
Our comparison is to calculate the difference between

keeping OutRent services running on remote node and moving
OutRent services back if possible. We will first demonstrate
our computing model and explain the rationality of this model.

The first situation is to calculate the original time consump-
tion. It has been already mentioned above that we choose
to transmit data as requested, so both the amount of whole
data and the number of request times are important factors
influencing the final result. Furthermore, after processing input
data services will give out some output data, and the proportion
of output and input is defined as the ‘return back rate’. Thus

the formula calculating the original time assumption is as
follows.

Toriginal = np ∗ (
Sizep ∗ (1 +R)

Snetwork remote

+ Tc remote) (1)

In this formula, Tc stands for the time consumption used
for creating network connection. According to the different
network condition, we divide it into remote and local situation,
corresponding to foreign Cloud and home Cloud. Besides, we
divide all data which need to be transmitted in the running
period into lots of chunks, once a time when being transmitted,
and we assume that each chunk share the same size. Here R
means the ‘return data rate’, np means the number of chunks,
and Sizep means the size of each chunk. The last two must
obey Equation 2.

Sizep ∗ np = Sizeall (2)

Snetwork represents the speed of transmission data based on
network connection, and it can also be divided into two
situations similarly to Tc. This formula reveals that the original
time consumption relies on the whole size of data, the number
of requests and the size of the return data. Because R is
determined by the specific workload, so we roughly assume it
as a constant.

In the second situation which is recommended, the time
consumption is mainly made up with the creation of network
connection, transmission of context information and data trans-
mission. When we decide to move it back, we need to save the
context information at that time, transmit it back and resume
it in order to continue running services locally. After that, data
transmission is also needed when running locally, but the speed
of network is different. According to the research on the life
migration of virtual machine presented in Kemari project [22],
time consumption on switching context can roughly be ignored
comparing to it on the transmission of context information. So
we get the following formula.

Toptimized = Tcontext + Tdata (3)

Tcontext = Tc remote +
Sizecontext

Snetwork remote

(4)

Tdata = np ∗ (
Sizep ∗ (1 +R)

Snetwork local

+ Tc local) (5)

Because we ignore the time consumption on switching context,
the final time roughly equals the sum of two parts. The first
part is spent for the transmission of context information, and
the second part is still for the data transmission, but based
on local network connection. In short, the difference between
original situation and optimized solution is the different net-
work condition and the time spent on transmitting.

After modeling these two conditions, we want to give out
the final result using some real numbers. There are some
constants in our model, and we want to give them some
simulation values respectively. According to the researches
performed in distribution system field [2] [13], creation of
network connection based on the Internet takes 100ms to
500ms in most cases, so we set Tc remote to 300ms, and

5555

creation time based on LAN or MAN ranges from 1ms to
10ms, so we set Tc local to 50ms. Similarly, Snetwork remote

is set to 1Mbps, and Snetwork local is set to 10Mbps. R
depends on the real workload very much, but for simplicity,
we set it to 0.6 as a combination of reading operation and
writing operation. We also give three values for Sizeall: 1M,
10M and 100M, three values for np: 100, 1,000 and 10,000,
and at last, three values for Sizecontext: 100K, 1M and 10M.
So we get the table shown in Figure 8 after calculation.

The improvement percentage between optimized time con-
sumption and original one ranges around 10% to 20%, which
is a real great promotion. So we want to point out here that
the results shown in the table is the maximum improvement
of each condition. If we think about the calculation formula
again, we can find that this calculation is based on the moment
when services begins. In most cases we need to make this type
of optimization decision in the middle of services’ running
period, which means the improvement percentage cannot be
so great. Besides, it has already been shown that there exists
a threshold and it will be meaningless to make optimization
when the left running time is less than this threshold. So an
important conclusion of this optimization is that the less the
running time is left, the less the improvement percentage will
be.

V. RELATED WORK
Researches on Cloud Federation Model can be roughly

divided into two parts. Their difference mainly lies in the
architecture of their implementation. The first view is to add a
Cloud Federation Center between users and Clouds which is
responsible for the forming and removing of Cloud Federation.
This view is proposed by Rajkumar Buyya [18] and it’s
somewhat similar to the existing SOA architecture. Once some
users commit a service to the federation center, it check the
service first and then arrange some resource units (or said
VMs) to serve for the service. Of course these units may come
from different Clouds, and the federation is then formed. In
Buyya’s InterCloud model, Cloud Broker and Cloud Exchange
acts as this center and its advantage mainly lies in that
not too many changes will be involved for existing Cloud
architecture. It is also obvious that single point failure should
be the main shortage for this architecture. Comparing with the
first view, more researchers choose to weaken the federation
center. In their models there still exists a center node, which
can be called a ‘directory center’. It is no longer designed
to decide the forming and removing of the federation, but
mainly focuses on storing information for Clouds and support
publish-and-subscribe mode. Both federation model proposed
in the research of Cross-Federation by Antonio Celesti [5]
and “RESERVOIR” model [19] proposed by IBM share this
view. Besides the directory center, there also exists a layer
in their models which is responsible for the discovery and
communication among Clouds. After the Cloud receives a
request, it asks for this layer to allocate remote resources if
needs. So this layer sends a query to the directory center for
other Clouds who has free resources and prepared to lease.

After that, these Clouds communicate with each other, and
the directory center is no longer involved in this federation.
Although the federation logic is more complicated, the re-
duction of pressure on the center node and more flexibility
that Cloud gain are the key feature against the first model.
Moreover, Celesti has proposed a three-phase solution to set
up a federation (“discovery, match-making and authentication”
[5] [3]) which can be treated as a general method. He also
introduced three detailed protocols used in these three phases
respectively.

There also exist some other researches emphasizing on some
other forms of federation of Cloud. Zhang [23] has presented
a Mobile-based Cloud Federation solution named MABOCCF.
The collaboration of Cloud is realized by the location move-
ment of mobile phone, which is called “passive” federation.
Casola’s [4] research mainly focus on the combination and
cooperation between Cloud computing and Grid computing,
but performance is its dominating drawback. Except for the
architecture of Cloud Federation Model, there are also some
researches focusing on billing decision and economic model of
federation. Goiri [12] has performed the best billing decision
under different conditions such as local only, insource, out-
source and hybrid respectively. He introduced some parameters
and listed a series of inequations to help Cloud providers
making their decisions among insourcing, outsourcing and
shutting down their computers. More specific, Erik Elmroth
[13] has carried out a billing model based on RESERVOIR
model [19]. It works as an extension for the RESERVOIR
and make up for its economical model.

VI. CONCLUSION

Researches on Cloud Federation have not last for many
years and it is thought to be in its infant period. Regardless of
the model proposed for Cloud Federation or its detailed imple-
mentation, two problems still arise which need all researchers
to solve: security and resource allocation. In this paper, we
discussed the latter problem and performed a mechanism to
deal with the dynamic allocation issues in both scaling-up and
scaling-down period. In short, our mechanism can roughly be
concluded into these rules:

1. Allocate local resources first because of the performance
difference. When there are not enough local resources, migrate
OutRent resources first and check again. If the left resources
are still not enough to hold the new request, then the migration
is meaningless, for we should assure the number of services
which need to be migrated is as little as possible.

2. Assure the integrity of services. Do not divided a
complete service into pieces and allocate it both locally and
remotely. The exponential increase in management cost and
the complexity in distributed transaction will ruin the whole
federation system.

3. Withdraw services running on remote node first unless its
left time is lower than a threshold. This will help to improve
the overall performance and eliminate the resource dependency
ring.

5656

 1M 10M 100M 1M 10M 100M 1M 10M 100M

100 1,000 10,000 100 1,000 10,000 100 1,000 10,000

Original 42.8s 158s 1,310s 312.8s 428s 1,580s 3,012.8s 3,128s 4,280s

Optimized

100K 6.68s 18.2s 133.4s 51.68s 63.2s 178.4s 501.68s 513.2s 628.4s

1M 7.58s 19.1s 134.3s 52.58s 64.1s 179.3s 502.58s 514.1s 629.3s

10M 16.58s 28.1s 143.3s 61.58s 73.1s 188.3s 511.58s 523.1s 638.3s

Data

Request
Context

Fig. 8. Simulation Evaluation

Next we are mean to doing some investigations and re-
searches on Cloud Federation and improve our resource allo-
cation mechanism. Out future work plan can be mainly divided
into these parts:

1. Investigate and make statistics on different type of Cloud
services in order to give out different ‘return back rate’ (or
said R in formula calculating the original and optimized time
consumption) according to different services to make our
calculation more accurate and convincing.

2. Give out more detailed rules or algorithms in the selection
of candidate service which needs to be migrated, and the
selection of candidate Cloud which acts as the destination
of the migration. It is displayed earlier in this paper that
inappropriate selection of services or Cloud will cause the
problem of wasting. Although there cannot exists a perfect
algorithm that works excellent in all situations, but we try to
carry out a better one in order to get a relatively good result
in as many situations as possible.

3. Deploy a real Cloud Federation environment and apply
our mechanism. We will do some experiments to get real
data and calculate its improvement comparing with its original
strategy.

REFERENCES

[1] J. G. I. F. I. R. A. Szalay, A. Bunn. The importance of data locality in
distributed computing applications. In NSF Workflow Workshop, pages
1–2, 2006.

[2] D. J. W. Andrew S. Tanenbaum. Computer Networks (4th Edition).
Pearson Education, 2006.

[3] M. V. Antonio Celesti, Francesco Tusa and A. Puliafito. Three-phase
cross-cloud federation model: The cloud sso authentication. In Second
International Conference on Advances in Future Internet, 2010.

[4] V. U. Casola V., Rak M. Identity federation in cloud computing. In
Sixth International Conference on Information Assurance and Security,
pages 253–259. IAS, 2010.

[5] V. M. P. A. Celesti A., Tusa F. How to enhance cloud architectures to
enable cross-federation. In IEEE 3rd International Conference on Cloud
Computing, pages 337–345. CLOUD, 2010.

[6] E. Ciurana. Developing with Google App Engine. Firstpress, 2009.
[7] M. K. E. Elnozahy and R. Rajamony. Energy-efficient server clusters.

In 2nd Workshop on Power-Aware Computing Systems, pages 179–196.
Cambridge, MA, USA, Feb 2002.

[8] F. G. M. Erik Elmroth. Accounting and billing for federated cloud
infrastructures. In GCC ’09. Eighth International Conference, pages
268–275. Grid and Cooperative Computing(GCC), 2009.

[9] R. I. L. S. Foster I., Yong Zhao. Cloud computing and grid computing
360-degree compared. In Grid Computing Environments Workshop,
pages 1–10. GCE, Aug 2008.

[10] S. T. I. Foster, C. Kesselman. The anatomy of the grid:enabling scalable
virtual organization. In The Intl. Jrnl. of High Performance Computing
Applications, pages 200–222, 2001.

[11] S. T. I. Foster, C. Kesselman. The physiology of the grid: An open
grid services architecture for distributed systems integration. In Globus
Project, pages 1–8, 2002.

[12] J. G. Inigo Goiri and J. Torres. Characterizing cloud federation for
enhancing providers profit. In IEEE 3rd International Conference on
Cloud Computing, pages 123–130. CLOUD, Jun 2010.

[13] G. C. Jean Dollimore, Tim Kindberg. Distributed System: Concept and
Design (4th Edition). Addison-Wesley, 2005.

[14] D. E. E. Larsson, L.; Henriksson. Scheduling and monitoring of
internally structured services in cloud federations. In Computers and
Communications (ISCC), pages 173–178. 2011 IEEE Symposium, Aug
2011.

[15] W. Li and L. Ping. Trust model to enhance security and interoperability
of cloud environment. In Cloud Computing, pages 69–79. CLOUD, Nov
2009.

[16] S. Microsystems. Take your business to a Higher Level -Sun cloud
computing technology scales your infrastructure to take advantage of
new business opportunities. Guide, Apr 2009.

[17] J. Murty. Programming Amazon Web Services. OReilly Press, 2008.
[18] R. R. Rajkumar Buyya and R. N. Calheiros. Intercloud: Utility-oriented

federation of cloud computing environments for scaling of application
services. In Proceedings of the 10th International Conference on
Algorithms and Architectures for Parallel Processing. LNCS, 2010.

[19] a. Rochwerger, B.; et. The reservoir model and architecture for open
federated cloud computing. In IBM Journal of Research Development,
pages 1–11. IBM, July 2009.

[20] X. C. X. H. Shuai Zhang, Shufen Zhang. Cloud computing research and
development trend. In Second International Conference, pages 93–97.
ICFN, Oct 2010.

[21] X. H. Shuai Zhang; Xuebin Chen, Shufen Zhang. The comparison be-
tween cloud computing and grid computing. In International Conference
Vol: 11, pages V11–72 – V11–75. Computer Application and System
Modeling (ICCASM), Nov 2010.

[22] S. K. Y. Tamura, K. Sato and S. Moriai. Kemari: virtual machine
synchronization for fault tolerance. In USENIX 08 Poster Session, 2008.

[23] X. Z. Zehua Zhang. Realization of open cloud computing federation
based on mobile agent. In IEEE International Conference, Volume: 3,
pages 642–646. ICIS, 2009.

5757

