

Shanghai Jiaotong University

Multithreaded Program Debug Visualization Helper

Final Report

Documented By: Jessie Zhang

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 2 of 16

Table of Contents
1. Abstract 4

2. Introduction 4

3. The Goal – Project Scope 5

4. Technologies used in the solution’s architecture 5
4.1 Microsoft Research “Detours” Technology 5

4.1.1 Main idea 5
4.1.2 Implementation 5

4.2 Platform Invoke (P/Invoke) 6
4.2.1 Introduction 6
4.2.2 Calling a DLL Export Directly from C# 6
4.2.3 Example 7

5. The solution 7
5.1 Architecture 7
5.2 Thread View 8
5.3 Implementation 9

5.3.1 Function List 9
5.3.2 Code snippets 11

6. Project Evaluation 14
6.1 Number of Lines of Code 14
6.2 Job Division 15
6.3 Problems Encountered 15

7. References 16

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 3 of 16

Acknowledgement

First, I must thank my professor Dr. Zhengwei Qi. He gave me a lot of help, encouragement and

support.

Second, I want to give credit to our TA Fuyuan Zhang. He gave me useful advice along the way.

Without his help, this project would have never gone so smoothly.

Third, I thank all the teachers who are responsible for the whole arrangement of the summer

projects at school. They have provided us with good environment for us to develop the software.

Finally, and most importantly, I thank all the team members, who worked with me during the

past two months. It takes their diligent work, patience and support to accomplish this project.

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 4 of 16

Final Report

1. Abstract
This project is the summer project at software engineering school, SJTU in July 2008. This project provides a

tool helping the programmer to debug their programs. It is based on a Microsoft-research technology called

Detours.

The final product of this project is an add-in for Microsoft Visual Studio 2005 which visualizes the track of

running threads with the help of interception of Win32 API function calls.

This project was created by:

Zhang Can zhangcansjtu@yahoo.com.cn Junior student of software engineering school, SJTU

Fang Wei zhongguotu2005@yahoo.com.cn Junior student of software engineering school, SJTU

Ji Xiaofei alonewolf_1217@sina.com Junior student of software engineering school, SJTU

Niu Xingman Junior student of software engineering school, SJTU

2. Introduction
Nowadays, with the requirements of high efficiency and high performance, multithreaded programs are used

more and more often in different kinds of projects. However, it also brings difficulty for programmers to debug

these programs. As we all know, we may get different results if we run the multithreaded programs for a

second time. Also, the Microsoft Visual Studio 2005(VS2005) does not provide an easy-use tool for the

programmers to debug the multithreaded programs.

As a result, in this project we want to create an add-in for VS2005, which will help the programmer debug

with multi-threaded programs by visualizing the Win32 API functions invoked by running threads in the

program.

In this project we use “Detours”, which is a library for instrumenting arbitrary Win32 functions on x86

machines. Detours intercepts Win32 functions by re-writing target function images.

While prior researchers have used binary rewriting to insert debugging and profiling instrumentation, to our

knowledge, Detours is the first package on any platform to logically preserve the non-instrmented target

function (callable through a trampoline) as a subroutine for use by the instrumentation. Using the unique

trampoline design is crucial for extending existing binary software.

Since the project’s scope is bounded by the academic research, we just implemented the interception of some

of the Win32 API function calls. We mainly concentrated in understanding the technologies that we involved

mailto:zhangcansjtu@yahoo.com.cn
mailto:zhongguotu2005@yahoo.com.cn
mailto:alonewolf_1217@sina.com

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 5 of 16

and to produce a working prototype of an add-in for VS2005 that displays the track of running threads.

3. The Goal – Project Scope
The goal that we set was to create an add-in for VS2005, which intercepts the Win32 API function calls to

display the track of running threads.

The main interest in this project was to get familiar with the Detours technology and to develop a working

prototype of a real world, usable add-in application.

4. Technologies used in the solution’s architecture

4.1 Microsoft Research “Detours” Technology

Reference: G. Hunt, D.B., Detours: Binary Interception of Win32 Functions. 1999, Microsoft Research.

4.1.1 Main idea

The Detours technology was conceived in the Microsoft Research labs. This is, yet, another method for

intercepting method calls. Many techniques exist to uphold this task, though, this mechanism is no intrusive –

the executable is not altered; only its memory image is changed. This way you do not need to compile the code

again (no need for sources).

4.1.2 Implementation

The Detours library facilitates the interception of function calls. Interception code is applied dynamically at

runtime. Detours replaces the first few instructions of the target function with an unconditional jump to the

user-provided detour function. Instructions from the target function are preserved in a trampoline function. The

trampoline consists of the instructions removed from the target function and an unconditional branch to the

remainder of the target function.

Figure 4-1 shows the logical flow control for function invocation with and without interception.

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 6 of 16

Figure. 4-1 Invocation with and without interception

4.2 Platform Invoke (P/Invoke)

Reference: http://msdn.microsoft.com/en-us/library/aa446536.aspx

http://msdn.microsoft.com/en-us/library/aa288468.aspx

4.2.1 Introduction

While Microsoft has incorporated much functionality into the .NET Framework class libraries, significant

additional functionality resides outside of the managed world of .NET. COM interoperability is necessary in

order to access native system APIs, such as shell integration, DirectX, Microsoft Office, and the Windows

Registry, as well as custom legacy COM objects. COM interoperability in .NET can be a tricky issue for

developers, who have to deal with issues such as figuring out the appropriate data types to use and marshalling

data between managed and unmanaged code.

.NET provides access to COM components through its P/Invoke facility. P/Invoke allows developers to invoke

native unmanaged methods from managed code.

4.2.2 Calling a DLL Export Directly from C#

To declare a method as having an implementation from a DLL export, do the following:

 Declare the method with the static and extern C# keywords.

http://msdn.microsoft.com/en-us/library/aa446536.aspx
http://msdn.microsoft.com/en-us/library/aa288468.aspx

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 7 of 16

 Attach the DllImport attribute to the method. The DllImport attribute allows you to specify the

name of the DLL that contains the method. The common practice is to name the C# method the same

as the exported method, but you can also use a different name for the C# method.

 Optionally, specify custom marshaling information for the method's parameters and return value,

which will override the .NET Framework default marshaling.

4.2.3 Example

//PInvokeTest.cs
using System;
using System.Runtime.InteropServices;

class PlatformInvokeTest
{
 [DllImport("msvcrt.dll")]

"msvcrt.dll")]

"Test");

 public static extern int puts(string c);

 [DllImport(
 internal static extern int _flushall();

 public static void Main()
 {
 puts(
 _flushall();
 }
}

5. The solution

5.1 Architecture

The following diagram displays the grand picture.

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 8 of 16

Spawned Process
(with the
DetoursModule.dll
injected)

DetoursModule.dll
(Binary DLL with
the Detours
function)

RunWithDllTool.
dll (inject the
DetoursModule.dl
l to the user
process)

Add-in User Interface

socket

inject

Send message
to front end

P/Invoke

5.2 Thread View

List<MultithreadDebugAddIn.
model.Message> msgHistory

Asynchronous
SocketServer thread

UI Updating thread

 Lock for
Synchronization

Detours
Module thread

Listening for connection

Sending messages

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 9 of 16

5.3 Implementation

5.3.1 Function List

The Win32 API function calls we intercept in this project are as follows:

CreateThread WaitForSingleObject

Sleep ExitThread

CreateEvent CreateMutex

CreateSemaphore TerminateThread

SuspendThread ResumeThread

ReleaseMutex ReleaseSemaphore

SetEvent ResetEvent

CloseHandle WaitForMultipleObjects

These functions are divided into six groups:

CreateThreadMsgType

CreateThread

CreateResourceMsgType HandleManipulateMsgType

WaitMsgType SelfManipulateMsgType MainThreadCreateMsgType

CreateEvent

CreateMutex

CreateSemaphore

TerminateThread

SuspendThread

ResumeThread

ReleaseMutex

ReleaseSemaphore

SetEvent

ResetEvent

CloseHandle

WaitForSingleObject

WaitForMultipleObjects

Sleep

ExitThread

CreateThread

These six Message Types are the most important data structures of the whole project. They all inherit from one

basic class – Message.

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 10 of 16

Each Message Type is defined as follows:

class Message
{
public:
 MessageName msgName;
 MessageType msgType;
 unsigned __int64 time; // in cpu cycle
 DWORD invokerThreadId; // the current invoker thread id
};

class CreateThreadMsg : public Message
{
public:
 HANDLE handle;
 HandleType handleType;
 DWORD threadId;
 ThreadState state;
};

class CreateResourceMsg : public Message
{
public:
 HANDLE handle;
 HandleType handleType;
 std::string name;
 ResourceState state;
};

class HandleManipulateMsg : public Message
{
public:
 HANDLE handle;
 int handleState; // ThreadState or ResourceState
};

class WaitMsg : public Message
{
public:
 int numOfObjects;
 const HANDLE* handles;
 ThreadState state;
};

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 11 of 16

are necessary in using Detours.

ginal Win32 API function.

class SelfManipulateMsg : public Message
{
public:
 ThreadState state;
};

5.3.2 Code snippets

 Using Detours

Basically, three steps

First, declare a new function pointer to point to the ori

Second, define your own function.

static HANDLE (WINAPI * TrueCreateThread)(LPSECURITY_ATTRIBUTES lpThreadAttributes,
 DWORD dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId)
= CreateThread;

function pointer

original function

//1.detoured method for Win32 API CreateThread
HANDLE WINAPI MyCreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,
 DWORD dwStackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId)
{
 printf(“Detoured CreateThread function\n”);
 return TrueCreateThread(lpThreadAttributes,
 dwStackSize,
 lpStartAddress,
 lpParameter,
 dwCreationFlags,
 lpThreadId);
}

Call original function

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 12 of 16

Third, attach your function to replace the original function by calling DetourAttach method, and detach your

function by calling DetourDetach method.

 Socket Communication

The user interface of the add-in is implemented in C#.net, and running in the devenv.exe process, while the

detours interception module, which is implemented in C++, is attached to the user program as a dll. Therefore,

there should be a way for them to communicate with each other. As mentioned above, we can call C++ dlls

from C#.net code using P/Invoke. Also, we can use socket technology for the communication of two processes.

Add-in Interface (Socket Server):

Use an Asynchronous socket to listen for connections:

(if you want to know more, turn to the SocketServer.cs file in the MultithreadDebugAddIn project.)

BOOL WINAPI DllMain(HINSTANCE hinst, DWORD dwReason, LPVOID reserved)
{
 LONG error;
 (void)hinst;
 (void)reserved;

 if (dwReason == DLL_PROCESS_ATTACH) {

DetourRestoreAfterWith();
 DetourTransactionBegin();
 DetourUpdateThread(GetCurrentThread());

/**/
/* attach all the detoured Win32 API */
DetourAttach(&(PVOID&)TrueCreateThread, MyCreateThread);
error = DetourTransactionCommit();

 }

tThread());

/**/
/* detach all the detoured Win32 API */
DetourDetach(&(PVOID&)TrueCreateThread, MyCreateThread);

 error = DetourTransactionCommit();
}

return true;

}

 else if (dwReason == DLL_PROCESS_DETACH) {
 DetourTransactionBegin();
 DetourUpdateThread(GetCurren

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 13 of 16

(if you want to know more, turn to the initSock.h and tools.cpp files in the DetoursModule project.)

 public static void StartListening()
 {
 // Data buffer for incoming data.
 byte[] bytes = new byte[1024];

 // Establish the local endpoint for the socket.
 IPAddress localAddr = IPAddress.Parse("127.0.0.1");
 IPEndPoint localEndPoint = new IPEndPoint(localAddr, PORT);
 // create a tcp/ip socket
 Socket listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);

 try
 {
 e socket to the local endpoint and listen for incoming connections.
 listener.Bind(localEndPoint);
 listener.Listen(100);

 while (!done)
 {
 // Set the event to nonsignaled state.
 allDone.Reset();

 an asynchronous socket to listen for connections.
 // Begin establishing connection
 listener.BeginAccept(
 new AsyncCallback(AcceptCallback),
 listener);

 // Wait until a connection is made before continuing.
 allDone.WaitOne();
 }

 // Bind th

 // Start

Asynchronous socket

 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }

Detours Module (Socket Client):

Use <winsock2.h> APIs to establish socket connections.

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 14 of 16

6. Project Evaluation

bool sendData(std::string data)
{
 //set the flag variable to be 1
 socketFlag = 1;

 //first,set server address
 sockaddr_in servAddr;
 servAddr.sin_family = AF_INET;
 servAddr.sin_port = htons(PORT);
 servAddr.sin_addr.S_un.S_addr = inet_addr("127.0.0.1");

 //second,prepare the client socket
 SOCKET s = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 if(s == INVALID_SOCKET)
 {
 printf(" Failed socket() \n");
 return false;
 }
 if(::connect(s, (sockaddr*)&servAddr, sizeof(servAddr)) == -1)
 {
 printf(" Failed connect() \n");
 return false;
 }

 //third,send the data
 const char* dataSent = data.c_str();
 int dataLength = data.length();

 send(s,dataSent,dataLength,0);

 //forth,close the client socket
 closesocket(s);

 //reset the flag variable to be the default value
 socketFlag = 0;
 return true;
}

6.1 Number of Lines of Code

The result is calculated by Line Counter add-in for VS2005.

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 15 of 16

6.2 Job Division

Member Main Job Project Total Lines Comments

Fang Wei Add-in GUI Design &

Implemen

MultithreadDebugAddIn 1389 220

tation

Ji Xiaofei Detours Module Design

& Implementation

DetoursModule 820 110

Niu Xingman Detours Module Data

Structure Design &

Implementation

DetoursModule 717 170

Zhang Can Architecture, Socket

Communication,

Testing

MultithreadDebugAddIn,

DetoursWithdllTool

3267 690

6.3 Problems Encountered

 Time accuracy

Typically, we use functions like GetSystemTime() or GetLocalTime() to get the system time.

he threads are running too fast so that the values returned by

these methods are almost the same.

tion to get the number of CPU cycles passed since computer startup

 Process communication

However, it’s not suitable for our project, for t

Finally, we use the GetCycleCount() func

to represent how much time has passed.

Multithreaded Program Debug Add-in Version: <1.0>
Final Report Date: <29/Aug/08>
No.0001

Confidential ©SJTU, 2008 Page 16 of 16

At first, we didn’t realize that there are two different processes running after starting up the add-in. Therefore,

we simply use the P/Invoke technique to invoke method written in C++ from C#.net code.

However, we found that the function calls didn’t succeed at all. At last, after we printed each process ID in the

C++ code and the C# code, we found that they are actually in two different processes.

The two processes are:

Process 1: Add-in runs in the devenv.exe process when VS2005 starts up

Process 2: DetoursModule.dll attaches to user program when the add-in is activated

The difficulty is how to do inter-process communication?

inally, we use socket techniques to make the communication possible. The solution seems easy and explicit,

o make it work. Synchronous socket server is not suitable for our project, for

the messages received from the socket clients are in high speed. Only the asynchronous socket works.

shing

We have to decide n calls are from the debugging user program. For those from user

 have to fo m calls or oth rces we h ignore

them.

 we mun the code ther o explici ion calls

to the detoured func nt are not right. I think that the socket call some detoured functions

implicitly when cal . We use a TLS(thread local storage) variable - socketFlag to separate

 socke rog

7. References
] G. Hunt, D.B., Detours: Binary Interception of Win32 Functions. 1999, Microsoft Research.

d Marshaling on the Microsoft .NET Compact Framework

icrosoft.com/en-us/library/aa446536.aspx

F

but it also takes us some effort t

 Distingui Function calls

whether the functio

program we notify the front end, while r those from syste er sou ave to

In our program, use socket to do the com

tions, the messages se

ling other functions

ication. Though in e are n t funct

the calls from t and from the real user p ram.

[1

[2] An Introduction to P/Invoke an

http://msdn.m

[3] Platform Invoke Tutorial

http://msdn.microsoft.com/en-us/library/aa288468.aspx

	1. Abstract
	2. Introduction
	3. The Goal – Project Scope
	4. Technologies used in the solution’s architecture
	4.1 Microsoft Research “Detours” Technology
	4.1.1 Main idea
	4.1.2 Implementation

	4.2 Platform Invoke (P/Invoke)
	4.2.1 Introduction
	4.2.2 Calling a DLL Export Directly from C#
	4.2.3 Example

	5. The solution
	5.1 Architecture
	5.2 Thread View
	5.3 Implementation
	5.3.1 Function List
	5.3.2 Code snippets

	6. Project Evaluation
	6.1 Number of Lines of Code
	6.2 Job Division
	6.3 Problems Encountered

	7. References

