Homework Assignment 2

I. Problem one

Similar to the conventional MLP, we can calculate the $\Delta u_{kj}(n)$ s and $\Delta v_{kj}(n)$ s of the network for both online learning and batch learning.

a) Online learning mode

$$\delta_{j}^{k}(n) = \begin{cases} e_{j}^{K}(n)f'\left(v_{j}^{K}(n)\right) & \text{for neuron } j \text{ in output layer } K\\ f'\left(v_{j}^{k}(n)\right) \sum_{i=1}^{N_{k+1}} \delta_{j}^{k+1}(n)\left(2u_{k+1,ji}x_{kj}+v_{k+1,ji}\right) & \text{for neuron } j \text{ in hidden layer } k \end{cases}$$

where $v_j^k = \sum_{i=1}^{N_{k-1}} (u_{kji} x_{k-1,i}^2 + v_{kji} x_{k-1,i}) + b_{kj}$.

Thus, according to the delta rule:

$$\Delta u_{kj}(n) = \eta_1 \delta_j^k(n) x_{k-1}^2$$

$$\Delta v_{kj}(n) = \eta_2 \delta_j^k(n) x_{k-1}$$

b) Batch learning mode

For the batch learning mode, the values $\Delta U_{kj}(n)$ and $\Delta V_{kj}(n)$ are the average of correction $\Delta u_{kj}(n)$ and $\Delta v_{kj}(n)$ during one epoch of training, and will only update after that epoch.

$$\Delta U_{kj}(n) = \frac{1}{N} \sum_{t=1}^{N} \Delta u_{kjt}(n)$$
$$\Delta V_{kj}(n) = \frac{1}{N} \sum_{t=1}^{N} \Delta v_{kjt}(n)$$

II. Problem two

In this assignment, I use Java to implement the Back Propagation algorithm, and the codes are under the directory workspace.

The main data structure for the neural network is the *NeuronNetwork* class in the *network* package.(Figure 1)

増 Package Expl 🖾	🕂 🕆 🗆 🗆 🔁
	□ 🔄 🐨 🏱
🔺 😂 homework2	
🔺 进 src	
🔺 🌐 (default j	package)
ВРАр	plications.java
⊳ 🌐 bp	
🖻 🌐 helper	
🔺 🌐 network	
Neuro	onNetwork.java
⊳ 🖶 neuron	
🖻 🛋 JRE System	Library (jre6)
data	
b C> output	

Figure 1. NeuronNetwork class

> The main implementation of BP algorithm is the BPAlgorithmForMLQP class. At the

same time, the *OnlineBPAlgorithm* class and the *BatchBPAlgorithm* class, which are the subclasses of the *BPAlgorithmForMLQP* class, realize the online and batch BP algorithm separately.

	🖻 😫 💱
🛛 🛃 hom	ework2
🔺 进 SI	rc
Þ	🗄 (default package)
⊿ 🗄	🗄 bp
I	🛛 🚺 BatchBPAlgorithm.java
t	BPAlgorithmForMLQP.java
ſ	🛛 🚺 OnlineBPAlgorithm.java
Þ	🗄 helper
Þ	🗄 network
Þ	neuron
Þ 🛋 I	RE System Library [jre6]
Þ 🔁 d	ata
Þ 🔁 o	utput

Figure 2. BPAlgorithmForMLQP class

III. Problem three

a) Online Learning Mode:

- 1) Case 1:
 - \checkmark uLearningRate = 1, vLearningRate = 1
 - \checkmark initial values: (u = v for each input)

Laye	hid	den		output layer								
r	la	yer										
u	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.1
	1	2	1	2	3	4	5	6	7	8	9	0
value	-0.1	0.0	-0.5	-0.4	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3	0.4
S												
bias		0.2										

 ✓ NumOfEpoches = 1000. (If we run the training data once, we call it an *epoch*. However, we do update weights after each single training data.)

✓ The training result: (The blank space between two colored areas is the decision boundaries)

Figure 3. case 1: two spiral grid

- 2) Case 2:
 - uLearningRate = 0.1, vLearningRate = 0.1 \checkmark

✓	• initial values: (u = v for each input)												
Laye	hid	den		output layer									
r	lay	yer											
u	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.1	
	1	2	1	2	3	4	5	6	7	8	9	0	
value	-0.1	0.0	-0.5	-0.4	-0.3	-0.2	-0.1	0.0	0.1	0.2	0.3	0.4	
S													
bias		0.2											

fo _1. ... 1 \sim

NumOfEpoches = 1000. \checkmark

 \checkmark The training result: (The blank space between two colored areas is the decision boundaries)

Figure 4. case 2: two spiral grid

- 3) Case 3:
 - √ uLearningRate = 1.0, vLearningRate = 1.0
 - initial values: (u = v for each input)✓

Laye	hid	den		output layer								
r	lay	yer										
u	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.1
	1	2	1	2	3	4	5	6	7	8	9	0
value	-1.0	0.0	-5.0	-4.0	-3.0	-2.0	-1.0	0.0	1.0	2.0	3.0	4.0
s												
bias		0.2										

✓ NumOfEpoches = 1000.

✓ The training result: (The blank space between two colored areas is the decision boundaries)

Figure 5. case 2: two spiral grid

4) MSEs compared

Here, I compare the MSEs of different learning rates, namely learning rate = 0.1, 0.5 and 1.0. The experiments are almost the same as case 1, except that I may use different learning rates. From Figure 5 below, we can see that smaller learning rate may lead to lower convergence speed. The network converges at epochs = $200 \sim 400$ when the learning rate is 1 and 0.5, while the MSE is still declining even after 1000 epochs when learning rate is 0.1.

Figure 6. MSEs of different learning rate

b) Batch Learning Mode

In our batch mode, I use 25 training data as a batch. In Figure 7, I compare the two learning mode to see their convergence speed. According to the results, we can see that compared to online learning mode, the batch learning has a much slower convergence speed.

Figure 7. online and batch learning compared

IV. Problem four

The neural network I used in this problem is a three-layer network: one input layer, one hidden layer and one output layer. The hidden layer is composed of ten units. I've used different learning rates, and tried different initial values, but I still didn't get a satisfying result. The main reasons may be:

The input data are not always within the range from 0.0 to 1.0. So, I consider that we may need a way of normalizing the input data. However, I didn't get any good idea of normalization. For those input which are among the range from 0 to 1000, I simply divide each input by 1000.

\triangleright	Online	learning	mode
------------------	--------	----------	------

 \checkmark initial values: (u = v for each input)

	-								
Layer	hidden layer	output layer							
u	from No.1 to No.19 fro	from No.1 to No.10							
values	-1.0 -0.9 -0.8 -0.7 0.00	0.5 -0.4 0 0.4 0.5							
	0.8 0.9 1.0								
bias	0.2								

✓ NumOfEpoches = 100000.

✓ MSEs when different learning rates are used:

Figure 8. MSEs for different learning rate

V. Problem five

a) Online Learning Mode:

- 5) Case 1:
 - \checkmark uLearningRate = 1, vLearningRate = 1
 - \checkmark initial values: (u = v for each input)

Layer	hidde	n layer	output layer							
u	No.1	No.2	No.1	No.2	No.3	No.4	No.5	No.6		
values	-0.1	0.0	-0.3	-0.2	-0.1	-0.0	0.1	0.2		
bias					0.2					

✓ NumOfEpoches = 1000.

 \checkmark The training result:

Figure 9. case 1: function surf

- 6) Case 2:
 - \checkmark uLearningRate = 0.1, vLearningRate = 0.1
 - \checkmark initial values: (u = v for each input)

Layer	hidde	n layer		output layer						
u	No.1	No.2	No.1	No.2	No.3	No.4	No.5	No.6		
values	-0.1	0.0	-0.3	-0.2	-0.1	-0.0	0.1	0.2		
bias					0.2					

- ✓ NumOfEpoches = 1000.
- \checkmark The training result:

Figure 10. case 2: function surf

- 7) Case 3:
 - \checkmark uLearningRate = 1.0, vLearningRate = 1.0
 - \checkmark initial values: (u = v for each input)

Layer	hidden layer			output layer				
u	No.1	No.2	No.1	No.2	No.3	No.4	No.5	No.6
values	-1.0	0.0	-3.0	-2.0	-1.0	0.0	1.0	2.0
bias					0.2			

✓ NumOfEpoches = 1000.

✓ The training result: (The blank space between two colored areas is the decision boundaries)

Figure 11. case 3: function suf

8) MSEs compared

Here, I compare the MSEs of the above three cases.

Figure 12. three cases' MSEs

b) Batch Learning Mode

In our batch mode, I use 25 training data as a batch.

- 9) Case 4:
 - \checkmark uLearningRate = 1.0, vLearningRate = 1.0
 - \checkmark initial values: (u = v for each input)

Layer	hidde	n layer	er output layer							
u	No.1	No.2	No.1	No.2	No.3	No.4	No.5	No.6		
values	-1.0	0.0	-3.0	-2.0	-1.0	0.0	1.0	2.0		
bias		0.2								

✓ NumOfEpoches = 1000.

✓ The training result: (The blank space between two colored areas is the decision boundaries)

Figure 13. case 4: function suf

In Figure 13, I compare the two learning modes (learning rate = 1.0) to see their convergence speed.

Figure 14. online and batch learning compared