
Neural Network Theory and Applications Final Project

 1 / 8

Neural Network Theory and Applications

Final Project Report
张灿 1090379019

1. Introduction

In this project, I will solve the maze problem using a well-known reinforcement learning
algorithm called Q-learning. Reinforcement learning algorithm, known as an unsupervised
learning, has been widely used for many applications such as robotics, multi-agent system,
game, and etc. Reinforcement learning usually contains an optimal policy, a reward function
and a value function; Q-learning applies an incremental dynamic-programming procedure
that determines the optimal policy in a step-by-step manner. Also, the maze problem
presented in this report is a little different from the original one, which has only one entry and
one exit. In Part Two, I will illustrate the problem in a clear and distinct way.

2. Problem Description

In the maze problem, the robot starts from one room inside the maze, and the task is to find an
acceptable path to get to the outside of the maze. By acceptable, I mean that the path found
may not be shortest path, but it will be an accept result, such as the fifth shortest path. Also,
there may be more than one path that leads to the outside of the maze.

The maze depicted in Figure 1 is one example of the maze problem. As shown in Figure
1, the width of the maze is 10, and the height is 8. And the maze is composed of 80 rooms,
separated from others by walls and doors. In Figure 1, the walls are drawn as black lines and
the doors as two separated short lines between two rooms. In addition, the room colored green
is the start point of the robot, and the robot is drawn as a red point. One acceptable result of
the maze problem is shown in Figure 2.

Figure 1. The maze problem

Neural Network Theory and Applications Final Project

 2 / 8

Figure 2. One result for the maze problem

3. Q-Learning Algorithm

Q-learning was first introduced by Watkins [1] in 1989, and the convergence proof has been
presented later by Watkins and Dayan [2] in 1992. Q-learning is a reinforcement
learning technique that works by learning an action-value function that gives the expected
utility of taking a given action in a given state and following a fixed policy thereafter. One of
the strengths of Q-learning is that it is able to compare the expected utility of the available
actions without requiring a model of the environment.

In the Q-learning algorithm, the virtual agent will learn through experience without
teacher (this is called unsupervised learning). The agent will explore state to state until it
reaches the goal. We call each exploration as an episode. In one episode the agent will move
from initial state until the goal state. Once the agent arrives at the goal state, program goes to
the next episode.

The pseudo code of Q-learning Algorithm:

Figure 3. The Q-Learning algorithm

Neural Network Theory and Applications Final Project

 3 / 8

4. Solution of the Maze Problem with Q-Learning

a) The Problem Model

The whole solution for this maze problem is implemented in Java.

The maze is modeled as two two-dimensional arrays in file Maze.java.

Figure 4. The model of the maze

b) Elements in Q-Learning

The main implementation of the Q-learning algorithm is in the file
QLearningMazeSolver.java. In this part, I will introduce the implementation with some
key elements in the Q-learning algorithm.

i. R-values

The immediate reward values are stored in the three-dimensional array – RMatrix.

Figure 5. The RMatrix

As shown in Figure 5, the first dimension specifies the row index of the room and
the second the column index and the third the action. For one room in the maze, the
robot can only have the choice of moving through doors to the adjacent room, so the
direction (namely EAST, SOUTH, WEST, and NORTH) is enough for specifying the
action from current state. The RMatrix is initialized according to the following rule:

 -1 : where there’s a wall

 0 : where there’s door

 1000 : where the direction of the room is facing the outside

Thus, part of the RMatrix of the maze shown in Figure 6 will look like:

 // when there is a door between room[r][c] and room[r+1][c], set gridsV[r][c] as

true

 // when there is a door between room[r][c] and room[r][c + 1], set gridsH[r][c]

as true

 private boolean[][] gridsV;

 private boolean[][] gridsH;

Neural Network Theory and Applications Final Project

 4 / 8

Figure 6. RMatrix for a simple maze

ii. Q-function

The Q-function for this maze problem is shown as below:

Figure 7. Q-function for the maze problem

iii. Q-values

The q values are stored in a three-dimensional array – QMatrix. The QMatrix almost
looks the same as the RMatrix. However, the QMatrix is initialized as a zero matrix, and
its value will be updated with the Q-function after each iteration, while the RMatrix will
stay unchanged.

At the begin, the QMatrix is full of zeros. Suppose γ = 0.5，after two iterations
from room A to the goal (the outside), the updated values in QMatrix are shown in
Figure 9.

Figure 8. The initial QMatrix Figure 9. QMatrix after two iterations

1000

0

1000

0

0

1000
-1

-1

1000

0

1000

0

0

0

0

A A
0

0

500

1000

Neural Network Theory and Applications Final Project

 5 / 8

iv. Learning Rate

The learning rate 𝛄𝛄 for the Q-function has range value of 0 to 1(0 ≤γ < 1). If 𝛄𝛄 is
closer to zero, the agent will tend to consider only immediate reward. If 𝛄𝛄 is closer to
one, the agent will consider future reward with greater weight, willing to delay the
reward.

5. Experiments

Results of four different experiments are illustrated in this part. In each experiment, different
𝛄𝛄 value will be used, and leads to different number of loops when the algorithm converges.

a) Experiment No.1

In this experiment, we deal with a simple maze depicted in Figure 10.

Figure 10. Maze for experiment No.1

𝛄𝛄 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Convergence 60 80 80 120 80 80 80 100 100

Table 1. Convergence loops for differentγs

Solution for this maze:

Figure 11. Solution for maze in experiment No.1

Neural Network Theory and Applications Final Project

 6 / 8

b) Experiment No.2

In this experiment, we deal with a complicated maze depicted in Figure 12.

Figure 12. Maze for experiment No.2

𝛄𝛄 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Convergence - - 160 160 180 160 180 160 240

Table 2. Convergence loops for differentγs

Solution for this maze:

Figure 11. Solution for maze in experiment No.2

c) Experiment No.3

In this experiment, we deal with a more complicated maze depicted in Figure 14.

Neural Network Theory and Applications Final Project

 7 / 8

Figure 14. Maze for experiment No.3

𝛄𝛄 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Convergence - - - - - - 300 280 320

Table 3. Convergence loops for differentγs

In Table 3, the symbol ‘-’ represents that it cannot find a solution for the maze.

Solution for this maze:

Figure 15. Solution for maze in experiment No.3

d) Experiment No.4

In this experiment, we deal with an 8*10 maze but with only one exit depicted in Figure
16.

Neural Network Theory and Applications Final Project

 8 / 8

Figure 16. Maze for experiment No.4

𝛄𝛄 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Convergence - - - - - - - - -

Table 4. Convergence loops for differentγs

The algorithm cannot find a solution for such a maze, even it seems not as complicated
as the maze depicted in Experiment No.3.

6. Conclusion

In this project, I try to solve the maze problem using Q-learning algorithm. After several
experiments, I get to some conclusions concerning this maze problem:

First, Q-learning is really an effective algorithm to solve the maze problem. It converges fast
even with differentγvalues.

Second, for some mazes (as depicted in Experiment No.2 and No.3), biggerγvalues may be
safer. By safer, I mean that the algorithm becomes more likely to converge with biggerγvalues.

Finally, the more exits the maze has, the more likely the algorithm will converge. For those
mazes who have few doors (as depicted in Experiment No.4), the algorithm may not find a
solution.

Reference

[1] Watkins, C.J.C.H., (1989), Learning from Delayed Rewards. Ph.D. thesis, Cambridge
University.

[2] Watkins and Dayan, C.J.C.H., (1992), 'Q-learning.Machine Learning', ISBN : 8:279-292

[3] http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/Q-Learning-Algorithm.htm

http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/Q-Learning-Algorithm.htm�

